#![allow(clippy::float_cmp)] use crate::rustc::lint::LateContext; use crate::rustc::{span_bug, bug}; use crate::rustc::hir::def::Def; use crate::rustc::hir::*; use crate::rustc::ty::{self, Ty, TyCtxt, Instance}; use crate::rustc::ty::subst::{Subst, Substs}; use std::cmp::Ordering::{self, Equal}; use std::cmp::PartialOrd; use std::hash::{Hash, Hasher}; use std::mem; use std::rc::Rc; use crate::syntax::ast::{FloatTy, LitKind}; use crate::syntax::ptr::P; use crate::utils::{sext, unsext, clip}; /// A `LitKind`-like enum to fold constant `Expr`s into. #[derive(Debug, Clone)] pub enum Constant { /// a String "abc" Str(String), /// a Binary String b"abc" Binary(Rc>), /// a single char 'a' Char(char), /// an integer's bit representation Int(u128), /// an f32 F32(f32), /// an f64 F64(f64), /// true or false Bool(bool), /// an array of constants Vec(Vec), /// also an array, but with only one constant, repeated N times Repeat(Box, u64), /// a tuple of constants Tuple(Vec), } impl PartialEq for Constant { fn eq(&self, other: &Self) -> bool { match (self, other) { (&Constant::Str(ref ls), &Constant::Str(ref rs)) => ls == rs, (&Constant::Binary(ref l), &Constant::Binary(ref r)) => l == r, (&Constant::Char(l), &Constant::Char(r)) => l == r, (&Constant::Int(l), &Constant::Int(r)) => l == r, (&Constant::F64(l), &Constant::F64(r)) => { // we want `Fw32 == FwAny` and `FwAny == Fw64`, by transitivity we must have // `Fw32 == Fw64` so don’t compare them // mem::transmute is required to catch non-matching 0.0, -0.0, and NaNs unsafe { mem::transmute::(l) == mem::transmute::(r) } }, (&Constant::F32(l), &Constant::F32(r)) => { // we want `Fw32 == FwAny` and `FwAny == Fw64`, by transitivity we must have // `Fw32 == Fw64` so don’t compare them // mem::transmute is required to catch non-matching 0.0, -0.0, and NaNs unsafe { mem::transmute::(f64::from(l)) == mem::transmute::(f64::from(r)) } }, (&Constant::Bool(l), &Constant::Bool(r)) => l == r, (&Constant::Vec(ref l), &Constant::Vec(ref r)) | (&Constant::Tuple(ref l), &Constant::Tuple(ref r)) => l == r, (&Constant::Repeat(ref lv, ref ls), &Constant::Repeat(ref rv, ref rs)) => ls == rs && lv == rv, _ => false, // TODO: Are there inter-type equalities? } } } impl Hash for Constant { fn hash(&self, state: &mut H) where H: Hasher, { match *self { Constant::Str(ref s) => { s.hash(state); }, Constant::Binary(ref b) => { b.hash(state); }, Constant::Char(c) => { c.hash(state); }, Constant::Int(i) => { i.hash(state); }, Constant::F32(f) => { unsafe { mem::transmute::(f64::from(f)) }.hash(state); }, Constant::F64(f) => { unsafe { mem::transmute::(f) }.hash(state); }, Constant::Bool(b) => { b.hash(state); }, Constant::Vec(ref v) | Constant::Tuple(ref v) => { v.hash(state); }, Constant::Repeat(ref c, l) => { c.hash(state); l.hash(state); }, } } } impl Constant { pub fn partial_cmp(tcx: TyCtxt<'_, '_, '_>, cmp_type: &ty::TyKind<'_>, left: &Self, right: &Self) -> Option { match (left, right) { (&Constant::Str(ref ls), &Constant::Str(ref rs)) => Some(ls.cmp(rs)), (&Constant::Char(ref l), &Constant::Char(ref r)) => Some(l.cmp(r)), (&Constant::Int(l), &Constant::Int(r)) => { if let ty::Int(int_ty) = *cmp_type { Some(sext(tcx, l, int_ty).cmp(&sext(tcx, r, int_ty))) } else { Some(l.cmp(&r)) } }, (&Constant::F64(l), &Constant::F64(r)) => l.partial_cmp(&r), (&Constant::F32(l), &Constant::F32(r)) => l.partial_cmp(&r), (&Constant::Bool(ref l), &Constant::Bool(ref r)) => Some(l.cmp(r)), (&Constant::Tuple(ref l), &Constant::Tuple(ref r)) | (&Constant::Vec(ref l), &Constant::Vec(ref r)) => l .iter() .zip(r.iter()) .map(|(li, ri)| Self::partial_cmp(tcx, cmp_type, li, ri)) .find(|r| r.map_or(true, |o| o != Ordering::Equal)) .unwrap_or_else(|| Some(l.len().cmp(&r.len()))), (&Constant::Repeat(ref lv, ref ls), &Constant::Repeat(ref rv, ref rs)) => { match Self::partial_cmp(tcx, cmp_type, lv, rv) { Some(Equal) => Some(ls.cmp(rs)), x => x, } }, _ => None, // TODO: Are there any useful inter-type orderings? } } } /// parse a `LitKind` to a `Constant` pub fn lit_to_constant<'tcx>(lit: &LitKind, ty: Ty<'tcx>) -> Constant { use crate::syntax::ast::*; match *lit { LitKind::Str(ref is, _) => Constant::Str(is.to_string()), LitKind::Byte(b) => Constant::Int(u128::from(b)), LitKind::ByteStr(ref s) => Constant::Binary(Rc::clone(s)), LitKind::Char(c) => Constant::Char(c), LitKind::Int(n, _) => Constant::Int(n), LitKind::Float(ref is, _) | LitKind::FloatUnsuffixed(ref is) => match ty.sty { ty::Float(FloatTy::F32) => Constant::F32(is.as_str().parse().unwrap()), ty::Float(FloatTy::F64) => Constant::F64(is.as_str().parse().unwrap()), _ => bug!(), }, LitKind::Bool(b) => Constant::Bool(b), } } pub fn constant<'c, 'cc>(lcx: &LateContext<'c, 'cc>, tables: &'c ty::TypeckTables<'cc>, e: &Expr) -> Option<(Constant, bool)> { let mut cx = ConstEvalLateContext { tcx: lcx.tcx, tables, param_env: lcx.param_env, needed_resolution: false, substs: lcx.tcx.intern_substs(&[]), }; cx.expr(e).map(|cst| (cst, cx.needed_resolution)) } pub fn constant_simple<'c, 'cc>(lcx: &LateContext<'c, 'cc>, tables: &'c ty::TypeckTables<'cc>, e: &Expr) -> Option { constant(lcx, tables, e).and_then(|(cst, res)| if res { None } else { Some(cst) }) } /// Creates a `ConstEvalLateContext` from the given `LateContext` and `TypeckTables` pub fn constant_context<'c, 'cc>(lcx: &LateContext<'c, 'cc>, tables: &'c ty::TypeckTables<'cc>) -> ConstEvalLateContext<'c, 'cc> { ConstEvalLateContext { tcx: lcx.tcx, tables, param_env: lcx.param_env, needed_resolution: false, substs: lcx.tcx.intern_substs(&[]), } } pub struct ConstEvalLateContext<'a, 'tcx: 'a> { tcx: TyCtxt<'a, 'tcx, 'tcx>, tables: &'a ty::TypeckTables<'tcx>, param_env: ty::ParamEnv<'tcx>, needed_resolution: bool, substs: &'tcx Substs<'tcx>, } impl<'c, 'cc> ConstEvalLateContext<'c, 'cc> { /// simple constant folding: Insert an expression, get a constant or none. pub fn expr(&mut self, e: &Expr) -> Option { match e.node { ExprKind::Path(ref qpath) => self.fetch_path(qpath, e.hir_id), ExprKind::Block(ref block, _) => self.block(block), ExprKind::If(ref cond, ref then, ref otherwise) => self.ifthenelse(cond, then, otherwise), ExprKind::Lit(ref lit) => Some(lit_to_constant(&lit.node, self.tables.expr_ty(e))), ExprKind::Array(ref vec) => self.multi(vec).map(Constant::Vec), ExprKind::Tup(ref tup) => self.multi(tup).map(Constant::Tuple), ExprKind::Repeat(ref value, _) => { let n = match self.tables.expr_ty(e).sty { ty::Array(_, n) => n.assert_usize(self.tcx).expect("array length"), _ => span_bug!(e.span, "typeck error"), }; self.expr(value).map(|v| Constant::Repeat(Box::new(v), n)) }, ExprKind::Unary(op, ref operand) => self.expr(operand).and_then(|o| match op { UnNot => self.constant_not(&o, self.tables.expr_ty(e)), UnNeg => self.constant_negate(&o, self.tables.expr_ty(e)), UnDeref => Some(o), }), ExprKind::Binary(op, ref left, ref right) => self.binop(op, left, right), // TODO: add other expressions _ => None, } } fn constant_not(&self, o: &Constant, ty: ty::Ty<'_>) -> Option { use self::Constant::*; match *o { Bool(b) => Some(Bool(!b)), Int(value) => { let value = !value; match ty.sty { ty::Int(ity) => Some(Int(unsext(self.tcx, value as i128, ity))), ty::Uint(ity) => Some(Int(clip(self.tcx, value, ity))), _ => None, } }, _ => None, } } fn constant_negate(&self, o: &Constant, ty: ty::Ty<'_>) -> Option { use self::Constant::*; match *o { Int(value) => { let ity = match ty.sty { ty::Int(ity) => ity, _ => return None, }; // sign extend let value = sext(self.tcx, value, ity); let value = value.checked_neg()?; // clear unused bits Some(Int(unsext(self.tcx, value, ity))) }, F32(f) => Some(F32(-f)), F64(f) => Some(F64(-f)), _ => None, } } /// create `Some(Vec![..])` of all constants, unless there is any /// non-constant part fn multi(&mut self, vec: &[Expr]) -> Option> { vec.iter() .map(|elem| self.expr(elem)) .collect::>() } /// lookup a possibly constant expression from a ExprKind::Path fn fetch_path(&mut self, qpath: &QPath, id: HirId) -> Option { let def = self.tables.qpath_def(qpath, id); match def { Def::Const(def_id) | Def::AssociatedConst(def_id) => { let substs = self.tables.node_substs(id); let substs = if self.substs.is_empty() { substs } else { substs.subst(self.tcx, self.substs) }; let instance = Instance::resolve(self.tcx, self.param_env, def_id, substs)?; let gid = GlobalId { instance, promoted: None, }; use crate::rustc::mir::interpret::GlobalId; let result = self.tcx.const_eval(self.param_env.and(gid)).ok()?; let ret = miri_to_const(self.tcx, result); if ret.is_some() { self.needed_resolution = true; } return ret; }, _ => {}, } None } /// A block can only yield a constant if it only has one constant expression fn block(&mut self, block: &Block) -> Option { if block.stmts.is_empty() { block.expr.as_ref().and_then(|b| self.expr(b)) } else { None } } fn ifthenelse(&mut self, cond: &Expr, then: &P, otherwise: &Option>) -> Option { if let Some(Constant::Bool(b)) = self.expr(cond) { if b { self.expr(&**then) } else { otherwise.as_ref().and_then(|expr| self.expr(expr)) } } else { None } } fn binop(&mut self, op: BinOp, left: &Expr, right: &Expr) -> Option { let l = self.expr(left)?; let r = self.expr(right); match (l, r) { (Constant::Int(l), Some(Constant::Int(r))) => { match self.tables.expr_ty(left).sty { ty::Int(ity) => { let l = sext(self.tcx, l, ity); let r = sext(self.tcx, r, ity); let zext = |n: i128| Constant::Int(unsext(self.tcx, n, ity)); match op.node { BinOpKind::Add => l.checked_add(r).map(zext), BinOpKind::Sub => l.checked_sub(r).map(zext), BinOpKind::Mul => l.checked_mul(r).map(zext), BinOpKind::Div if r != 0 => l.checked_div(r).map(zext), BinOpKind::Rem if r != 0 => l.checked_rem(r).map(zext), BinOpKind::Shr => l.checked_shr(r as u128 as u32).map(zext), BinOpKind::Shl => l.checked_shl(r as u128 as u32).map(zext), BinOpKind::BitXor => Some(zext(l ^ r)), BinOpKind::BitOr => Some(zext(l | r)), BinOpKind::BitAnd => Some(zext(l & r)), BinOpKind::Eq => Some(Constant::Bool(l == r)), BinOpKind::Ne => Some(Constant::Bool(l != r)), BinOpKind::Lt => Some(Constant::Bool(l < r)), BinOpKind::Le => Some(Constant::Bool(l <= r)), BinOpKind::Ge => Some(Constant::Bool(l >= r)), BinOpKind::Gt => Some(Constant::Bool(l > r)), _ => None, } } ty::Uint(_) => { match op.node { BinOpKind::Add => l.checked_add(r).map(Constant::Int), BinOpKind::Sub => l.checked_sub(r).map(Constant::Int), BinOpKind::Mul => l.checked_mul(r).map(Constant::Int), BinOpKind::Div => l.checked_div(r).map(Constant::Int), BinOpKind::Rem => l.checked_rem(r).map(Constant::Int), BinOpKind::Shr => l.checked_shr(r as u32).map(Constant::Int), BinOpKind::Shl => l.checked_shl(r as u32).map(Constant::Int), BinOpKind::BitXor => Some(Constant::Int(l ^ r)), BinOpKind::BitOr => Some(Constant::Int(l | r)), BinOpKind::BitAnd => Some(Constant::Int(l & r)), BinOpKind::Eq => Some(Constant::Bool(l == r)), BinOpKind::Ne => Some(Constant::Bool(l != r)), BinOpKind::Lt => Some(Constant::Bool(l < r)), BinOpKind::Le => Some(Constant::Bool(l <= r)), BinOpKind::Ge => Some(Constant::Bool(l >= r)), BinOpKind::Gt => Some(Constant::Bool(l > r)), _ => None, } }, _ => None, } }, (Constant::F32(l), Some(Constant::F32(r))) => match op.node { BinOpKind::Add => Some(Constant::F32(l + r)), BinOpKind::Sub => Some(Constant::F32(l - r)), BinOpKind::Mul => Some(Constant::F32(l * r)), BinOpKind::Div => Some(Constant::F32(l / r)), BinOpKind::Rem => Some(Constant::F32(l % r)), BinOpKind::Eq => Some(Constant::Bool(l == r)), BinOpKind::Ne => Some(Constant::Bool(l != r)), BinOpKind::Lt => Some(Constant::Bool(l < r)), BinOpKind::Le => Some(Constant::Bool(l <= r)), BinOpKind::Ge => Some(Constant::Bool(l >= r)), BinOpKind::Gt => Some(Constant::Bool(l > r)), _ => None, }, (Constant::F64(l), Some(Constant::F64(r))) => match op.node { BinOpKind::Add => Some(Constant::F64(l + r)), BinOpKind::Sub => Some(Constant::F64(l - r)), BinOpKind::Mul => Some(Constant::F64(l * r)), BinOpKind::Div => Some(Constant::F64(l / r)), BinOpKind::Rem => Some(Constant::F64(l % r)), BinOpKind::Eq => Some(Constant::Bool(l == r)), BinOpKind::Ne => Some(Constant::Bool(l != r)), BinOpKind::Lt => Some(Constant::Bool(l < r)), BinOpKind::Le => Some(Constant::Bool(l <= r)), BinOpKind::Ge => Some(Constant::Bool(l >= r)), BinOpKind::Gt => Some(Constant::Bool(l > r)), _ => None, }, (l, r) => match (op.node, l, r) { (BinOpKind::And, Constant::Bool(false), _) => Some(Constant::Bool(false)), (BinOpKind::Or, Constant::Bool(true), _) => Some(Constant::Bool(true)), (BinOpKind::And, Constant::Bool(true), Some(r)) | (BinOpKind::Or, Constant::Bool(false), Some(r)) => Some(r), (BinOpKind::BitXor, Constant::Bool(l), Some(Constant::Bool(r))) => Some(Constant::Bool(l ^ r)), (BinOpKind::BitAnd, Constant::Bool(l), Some(Constant::Bool(r))) => Some(Constant::Bool(l & r)), (BinOpKind::BitOr, Constant::Bool(l), Some(Constant::Bool(r))) => Some(Constant::Bool(l | r)), _ => None, }, } } } pub fn miri_to_const<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, result: &ty::Const<'tcx>) -> Option { use crate::rustc::mir::interpret::{Scalar, ConstValue}; match result.val { ConstValue::Scalar(Scalar::Bits{ bits: b, ..}) => match result.ty.sty { ty::Bool => Some(Constant::Bool(b == 1)), ty::Uint(_) | ty::Int(_) => Some(Constant::Int(b)), ty::Float(FloatTy::F32) => Some(Constant::F32(f32::from_bits(b as u32))), ty::Float(FloatTy::F64) => Some(Constant::F64(f64::from_bits(b as u64))), // FIXME: implement other conversion _ => None, }, ConstValue::ScalarPair(Scalar::Ptr(ptr), Scalar::Bits { bits: n, .. }) => match result.ty.sty { ty::Ref(_, tam, _) => match tam.sty { ty::Str => { let alloc = tcx .alloc_map .lock() .unwrap_memory(ptr.alloc_id); let offset = ptr.offset.bytes() as usize; let n = n as usize; String::from_utf8(alloc.bytes[offset..(offset + n)].to_owned()).ok().map(Constant::Str) }, _ => None, }, _ => None, } // FIXME: implement other conversions _ => None, } }