use syntax::ptr::P; use syntax::ast; use syntax::ast::*; use syntax::ast_util::{is_comparison_binop, binop_to_string}; use syntax::visit::{FnKind}; use rustc::lint::{Context, LintPass, LintArray, Lint, Level}; use rustc::middle::ty; use syntax::codemap::{Span, Spanned}; use utils::{match_path, snippet, span_lint, span_help_and_lint, walk_ptrs_ty}; /// Handles uncategorized lints /// Currently handles linting of if-let-able matches #[allow(missing_copy_implementations)] pub struct MiscPass; declare_lint!(pub SINGLE_MATCH, Warn, "a match statement with a single nontrivial arm (i.e, where the other arm \ is `_ => {}`) is used; recommends `if let` instead"); impl LintPass for MiscPass { fn get_lints(&self) -> LintArray { lint_array!(SINGLE_MATCH) } fn check_expr(&mut self, cx: &Context, expr: &Expr) { if let ExprMatch(ref ex, ref arms, ast::MatchSource::Normal) = expr.node { if arms.len() == 2 { if arms[0].guard.is_none() && arms[1].pats.len() == 1 { match arms[1].body.node { ExprTup(ref v) if v.is_empty() && arms[1].guard.is_none() => (), ExprBlock(ref b) if b.stmts.is_empty() && arms[1].guard.is_none() => (), _ => return } // In some cases, an exhaustive match is preferred to catch situations when // an enum is extended. So we only consider cases where a `_` wildcard is used if arms[1].pats[0].node == PatWild(PatWildSingle) && arms[0].pats.len() == 1 { let body_code = snippet(cx, arms[0].body.span, ".."); let suggestion = if let ExprBlock(_) = arms[0].body.node { body_code.into_owned() } else { format!("{{ {} }}", body_code) }; span_help_and_lint(cx, SINGLE_MATCH, expr.span, "you seem to be trying to use match for \ destructuring a single pattern. Did you mean to \ use `if let`?", &*format!("try\nif let {} = {} {}", snippet(cx, arms[0].pats[0].span, ".."), snippet(cx, ex.span, ".."), suggestion) ); } } } } } } declare_lint!(pub TOPLEVEL_REF_ARG, Warn, "a function argument is declared `ref` (i.e. `fn foo(ref x: u8)`, but not \ `fn foo((ref x, ref y): (u8, u8))`)"); #[allow(missing_copy_implementations)] pub struct TopLevelRefPass; impl LintPass for TopLevelRefPass { fn get_lints(&self) -> LintArray { lint_array!(TOPLEVEL_REF_ARG) } fn check_fn(&mut self, cx: &Context, _: FnKind, decl: &FnDecl, _: &Block, _: Span, _: NodeId) { for ref arg in decl.inputs.iter() { if let PatIdent(BindByRef(_), _, _) = arg.pat.node { span_lint(cx, TOPLEVEL_REF_ARG, arg.pat.span, "`ref` directly on a function argument is ignored. Consider using a reference type instead." ); } } } } declare_lint!(pub CMP_NAN, Deny, "comparisons to NAN (which will always return false, which is probably not intended)"); #[derive(Copy,Clone)] pub struct CmpNan; impl LintPass for CmpNan { fn get_lints(&self) -> LintArray { lint_array!(CMP_NAN) } fn check_expr(&mut self, cx: &Context, expr: &Expr) { if let ExprBinary(ref cmp, ref left, ref right) = expr.node { if is_comparison_binop(cmp.node) { if let &ExprPath(_, ref path) = &left.node { check_nan(cx, path, expr.span); } if let &ExprPath(_, ref path) = &right.node { check_nan(cx, path, expr.span); } } } } } fn check_nan(cx: &Context, path: &Path, span: Span) { path.segments.last().map(|seg| if seg.identifier.name == "NAN" { span_lint(cx, CMP_NAN, span, "doomed comparison with NAN, use `std::{f32,f64}::is_nan()` instead"); }); } declare_lint!(pub FLOAT_CMP, Warn, "using `==` or `!=` on float values (as floating-point operations \ usually involve rounding errors, it is always better to check for approximate \ equality within small bounds)"); #[derive(Copy,Clone)] pub struct FloatCmp; impl LintPass for FloatCmp { fn get_lints(&self) -> LintArray { lint_array!(FLOAT_CMP) } fn check_expr(&mut self, cx: &Context, expr: &Expr) { if let ExprBinary(ref cmp, ref left, ref right) = expr.node { let op = cmp.node; if (op == BiEq || op == BiNe) && (is_float(cx, left) || is_float(cx, right)) { span_lint(cx, FLOAT_CMP, expr.span, &format!( "{}-comparison of f32 or f64 detected. Consider changing this to \ `abs({} - {}) < epsilon` for some suitable value of epsilon", binop_to_string(op), snippet(cx, left.span, ".."), snippet(cx, right.span, ".."))); } } } } fn is_float(cx: &Context, expr: &Expr) -> bool { if let ty::TyFloat(_) = walk_ptrs_ty(cx.tcx.expr_ty(expr)).sty { true } else { false } } declare_lint!(pub PRECEDENCE, Warn, "expressions where precedence may trip up the unwary reader of the source; \ suggests adding parentheses, e.g. `x << 2 + y` will be parsed as `x << (2 + y)`"); #[derive(Copy,Clone)] pub struct Precedence; impl LintPass for Precedence { fn get_lints(&self) -> LintArray { lint_array!(PRECEDENCE) } fn check_expr(&mut self, cx: &Context, expr: &Expr) { if let ExprBinary(Spanned { node: op, ..}, ref left, ref right) = expr.node { if is_bit_op(op) && (is_arith_expr(left) || is_arith_expr(right)) { span_lint(cx, PRECEDENCE, expr.span, "operator precedence can trip the unwary. Consider adding parentheses \ to the subexpression"); } } } } fn is_arith_expr(expr : &Expr) -> bool { match expr.node { ExprBinary(Spanned { node: op, ..}, _, _) => is_arith_op(op), _ => false } } fn is_bit_op(op : BinOp_) -> bool { match op { BiBitXor | BiBitAnd | BiBitOr | BiShl | BiShr => true, _ => false } } fn is_arith_op(op : BinOp_) -> bool { match op { BiAdd | BiSub | BiMul | BiDiv | BiRem => true, _ => false } } declare_lint!(pub CMP_OWNED, Warn, "creating owned instances for comparing with others, e.g. `x == \"foo\".to_string()`"); #[derive(Copy,Clone)] pub struct CmpOwned; impl LintPass for CmpOwned { fn get_lints(&self) -> LintArray { lint_array!(CMP_OWNED) } fn check_expr(&mut self, cx: &Context, expr: &Expr) { if let ExprBinary(ref cmp, ref left, ref right) = expr.node { if is_comparison_binop(cmp.node) { check_to_owned(cx, left, right.span); check_to_owned(cx, right, left.span) } } } } fn check_to_owned(cx: &Context, expr: &Expr, other_span: Span) { match &expr.node { &ExprMethodCall(Spanned{node: ref ident, ..}, _, ref args) => { let name = ident.name; if name == "to_string" || name == "to_owned" && is_str_arg(cx, args) { span_lint(cx, CMP_OWNED, expr.span, &format!( "this creates an owned instance just for comparison. \ Consider using `{}.as_slice()` to compare without allocation", snippet(cx, other_span, ".."))) } }, &ExprCall(ref path, _) => { if let &ExprPath(None, ref path) = &path.node { if match_path(path, &["String", "from_str"]) || match_path(path, &["String", "from"]) { span_lint(cx, CMP_OWNED, expr.span, &format!( "this creates an owned instance just for comparison. \ Consider using `{}.as_slice()` to compare without allocation", snippet(cx, other_span, ".."))) } } }, _ => () } } fn is_str_arg(cx: &Context, args: &[P]) -> bool { args.len() == 1 && if let ty::TyStr = walk_ptrs_ty(cx.tcx.expr_ty(&*args[0])).sty { true } else { false } } declare_lint!(pub MODULO_ONE, Warn, "taking a number modulo 1, which always returns 0"); #[derive(Copy,Clone)] pub struct ModuloOne; impl LintPass for ModuloOne { fn get_lints(&self) -> LintArray { lint_array!(MODULO_ONE) } fn check_expr(&mut self, cx: &Context, expr: &Expr) { if let ExprBinary(ref cmp, _, ref right) = expr.node { if let &Spanned {node: BinOp_::BiRem, ..} = cmp { if is_lit_one(right) { cx.span_lint(MODULO_ONE, expr.span, "any number modulo 1 will be 0"); } } } } } fn is_lit_one(expr: &Expr) -> bool { if let ExprLit(ref spanned) = expr.node { if let LitInt(1, _) = spanned.node { return true; } } false }