use reexport::*; use rustc::front::map::Node; use rustc::lint::{LintContext, LateContext, Level, Lint}; use rustc::middle::def_id::DefId; use rustc::traits; use rustc::traits::ProjectionMode; use rustc::middle::{cstore, def}; use rustc::infer; use rustc::ty; use rustc::ty::subst::Subst; use rustc::session::Session; use rustc_front::hir::*; use std::borrow::Cow; use std::mem; use std::ops::{Deref, DerefMut}; use std::str::FromStr; use syntax::ast::{self, LitKind, RangeLimits}; use syntax::codemap::{ExpnInfo, Span, ExpnFormat}; use syntax::errors::DiagnosticBuilder; use syntax::ptr::P; pub mod comparisons; pub mod conf; mod hir; pub use self::hir::{SpanlessEq, SpanlessHash}; pub type MethodArgs = HirVec>; // module DefPaths for certain structs/enums we check for pub const BEGIN_UNWIND: [&'static str; 3] = ["std", "rt", "begin_unwind"]; pub const BOX_NEW_PATH: [&'static str; 4] = ["std", "boxed", "Box", "new"]; pub const BTREEMAP_ENTRY_PATH: [&'static str; 4] = ["collections", "btree", "map", "Entry"]; pub const BTREEMAP_PATH: [&'static str; 4] = ["collections", "btree", "map", "BTreeMap"]; pub const CLONE_PATH: [&'static str; 3] = ["clone", "Clone", "clone"]; pub const CLONE_TRAIT_PATH: [&'static str; 2] = ["clone", "Clone"]; pub const COW_PATH: [&'static str; 3] = ["collections", "borrow", "Cow"]; pub const DEBUG_FMT_METHOD_PATH: [&'static str; 4] = ["std", "fmt", "Debug", "fmt"]; pub const DEFAULT_TRAIT_PATH: [&'static str; 3] = ["core", "default", "Default"]; pub const DISPLAY_FMT_METHOD_PATH: [&'static str; 4] = ["std", "fmt", "Display", "fmt"]; pub const DROP_PATH: [&'static str; 3] = ["core", "mem", "drop"]; pub const FMT_ARGUMENTS_NEWV1_PATH: [&'static str; 4] = ["std", "fmt", "Arguments", "new_v1"]; pub const FMT_ARGUMENTV1_NEW_PATH: [&'static str; 4] = ["std", "fmt", "ArgumentV1", "new"]; pub const HASHMAP_ENTRY_PATH: [&'static str; 5] = ["std", "collections", "hash", "map", "Entry"]; pub const HASHMAP_PATH: [&'static str; 5] = ["std", "collections", "hash", "map", "HashMap"]; pub const HASH_PATH: [&'static str; 2] = ["hash", "Hash"]; pub const IO_PRINT_PATH: [&'static str; 3] = ["std", "io", "_print"]; pub const LL_PATH: [&'static str; 3] = ["collections", "linked_list", "LinkedList"]; pub const MUTEX_PATH: [&'static str; 4] = ["std", "sync", "mutex", "Mutex"]; pub const OPEN_OPTIONS_PATH: [&'static str; 3] = ["std", "fs", "OpenOptions"]; pub const OPTION_PATH: [&'static str; 3] = ["core", "option", "Option"]; pub const RANGE_FROM_PATH: [&'static str; 3] = ["std", "ops", "RangeFrom"]; pub const RANGE_FULL_PATH: [&'static str; 3] = ["std", "ops", "RangeFull"]; pub const RANGE_INCLUSIVE_NON_EMPTY_PATH: [&'static str; 4] = ["std", "ops", "RangeInclusive", "NonEmpty"]; pub const RANGE_PATH: [&'static str; 3] = ["std", "ops", "Range"]; pub const RANGE_TO_INCLUSIVE_PATH: [&'static str; 3] = ["std", "ops", "RangeToInclusive"]; pub const RANGE_TO_PATH: [&'static str; 3] = ["std", "ops", "RangeTo"]; pub const REGEX_NEW_PATH: [&'static str; 3] = ["regex", "Regex", "new"]; pub const RESULT_PATH: [&'static str; 3] = ["core", "result", "Result"]; pub const STRING_PATH: [&'static str; 3] = ["collections", "string", "String"]; pub const TRANSMUTE_PATH: [&'static str; 3] = ["core", "intrinsics", "transmute"]; pub const VEC_FROM_ELEM_PATH: [&'static str; 3] = ["std", "vec", "from_elem"]; pub const VEC_PATH: [&'static str; 3] = ["collections", "vec", "Vec"]; pub const BOX_PATH: [&'static str; 3] = ["std", "boxed", "Box"]; /// Produce a nested chain of if-lets and ifs from the patterns: /// /// if_let_chain! { /// [ /// let Some(y) = x, /// y.len() == 2, /// let Some(z) = y, /// ], /// { /// block /// } /// } /// /// becomes /// /// if let Some(y) = x { /// if y.len() == 2 { /// if let Some(z) = y { /// block /// } /// } /// } #[macro_export] macro_rules! if_let_chain { ([let $pat:pat = $expr:expr, $($tt:tt)+], $block:block) => { if let $pat = $expr { if_let_chain!{ [$($tt)+], $block } } }; ([let $pat:pat = $expr:expr], $block:block) => { if let $pat = $expr { $block } }; ([let $pat:pat = $expr:expr,], $block:block) => { if let $pat = $expr { $block } }; ([$expr:expr, $($tt:tt)+], $block:block) => { if $expr { if_let_chain!{ [$($tt)+], $block } } }; ([$expr:expr], $block:block) => { if $expr { $block } }; ([$expr:expr,], $block:block) => { if $expr { $block } }; } /// Returns true if the two spans come from differing expansions (i.e. one is from a macro and one /// isn't). pub fn differing_macro_contexts(lhs: Span, rhs: Span) -> bool { rhs.expn_id != lhs.expn_id } /// Returns true if this `expn_info` was expanded by any macro. pub fn in_macro(cx: &T, span: Span) -> bool { cx.sess().codemap().with_expn_info(span.expn_id, |info| info.is_some()) } /// Returns true if the macro that expanded the crate was outside of the current crate or was a /// compiler plugin. pub fn in_external_macro(cx: &T, span: Span) -> bool { /// Invokes `in_macro` with the expansion info of the given span slightly heavy, try to use /// this after other checks have already happened. fn in_macro_ext(cx: &T, opt_info: Option<&ExpnInfo>) -> bool { // no ExpnInfo = no macro opt_info.map_or(false, |info| { if let ExpnFormat::MacroAttribute(..) = info.callee.format { // these are all plugins return true; } // no span for the callee = external macro info.callee.span.map_or(true, |span| { // no snippet = external macro or compiler-builtin expansion cx.sess().codemap().span_to_snippet(span).ok().map_or(true, |code| !code.starts_with("macro_rules")) }) }) } cx.sess().codemap().with_expn_info(span.expn_id, |info| in_macro_ext(cx, info)) } /// Check if a `DefId`'s path matches the given absolute type path usage. /// /// # Examples /// ``` /// match_def_path(cx, id, &["core", "option", "Option"]) /// ``` pub fn match_def_path(cx: &LateContext, def_id: DefId, path: &[&str]) -> bool { cx.tcx.with_path(def_id, |iter| { let mut len = 0; iter.inspect(|_| len += 1) .zip(path) .all(|(nm, p)| nm.name().as_str() == *p) && len == path.len() }) } /// Check if type is struct or enum type with given def path. pub fn match_type(cx: &LateContext, ty: ty::Ty, path: &[&str]) -> bool { match ty.sty { ty::TyEnum(ref adt, _) | ty::TyStruct(ref adt, _) => match_def_path(cx, adt.did, path), _ => false, } } /// Check if the method call given in `expr` belongs to given type. pub fn match_impl_method(cx: &LateContext, expr: &Expr, path: &[&str]) -> bool { let method_call = ty::MethodCall::expr(expr.id); let trt_id = cx.tcx .tables .borrow() .method_map .get(&method_call) .and_then(|callee| cx.tcx.impl_of_method(callee.def_id)); if let Some(trt_id) = trt_id { match_def_path(cx, trt_id, path) } else { false } } /// Check if the method call given in `expr` belongs to given trait. pub fn match_trait_method(cx: &LateContext, expr: &Expr, path: &[&str]) -> bool { let method_call = ty::MethodCall::expr(expr.id); let trt_id = cx.tcx .tables .borrow() .method_map .get(&method_call) .and_then(|callee| cx.tcx.trait_of_item(callee.def_id)); if let Some(trt_id) = trt_id { match_def_path(cx, trt_id, path) } else { false } } /// Match a `Path` against a slice of segment string literals. /// /// # Examples /// ``` /// match_path(path, &["std", "rt", "begin_unwind"]) /// ``` pub fn match_path(path: &Path, segments: &[&str]) -> bool { path.segments.iter().rev().zip(segments.iter().rev()).all(|(a, b)| a.identifier.name.as_str() == *b) } /// Match a `Path` against a slice of segment string literals, e.g. /// /// # Examples /// ``` /// match_path(path, &["std", "rt", "begin_unwind"]) /// ``` pub fn match_path_ast(path: &ast::Path, segments: &[&str]) -> bool { path.segments.iter().rev().zip(segments.iter().rev()).all(|(a, b)| a.identifier.name.as_str() == *b) } /// Get the definition associated to a path. /// TODO: investigate if there is something more efficient for that. pub fn path_to_def(cx: &LateContext, path: &[&str]) -> Option { let cstore = &cx.tcx.sess.cstore; let crates = cstore.crates(); let krate = crates.iter().find(|&&krate| cstore.crate_name(krate) == path[0]); if let Some(krate) = krate { let mut items = cstore.crate_top_level_items(*krate); let mut path_it = path.iter().skip(1).peekable(); loop { let segment = match path_it.next() { Some(segment) => segment, None => return None, }; for item in &mem::replace(&mut items, vec![]) { if item.name.as_str() == *segment { if path_it.peek().is_none() { return Some(item.def); } let def_id = match item.def { cstore::DefLike::DlDef(def) => def.def_id(), cstore::DefLike::DlImpl(def_id) => def_id, _ => panic!("Unexpected {:?}", item.def), }; items = cstore.item_children(def_id); break; } } } } else { None } } /// Convenience function to get the `DefId` of a trait by path. pub fn get_trait_def_id(cx: &LateContext, path: &[&str]) -> Option { let def = match path_to_def(cx, path) { Some(def) => def, None => return None, }; match def { cstore::DlDef(def::Def::Trait(trait_id)) => Some(trait_id), _ => None, } } /// Check whether a type implements a trait. /// See also `get_trait_def_id`. pub fn implements_trait<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, ty: ty::Ty<'tcx>, trait_id: DefId, ty_params: Vec>) -> bool { cx.tcx.populate_implementations_for_trait_if_necessary(trait_id); let ty = cx.tcx.erase_regions(&ty); let infcx = infer::new_infer_ctxt(cx.tcx, &cx.tcx.tables, None, ProjectionMode::Any); let obligation = traits::predicate_for_trait_def(cx.tcx, traits::ObligationCause::dummy(), trait_id, 0, ty, ty_params); traits::SelectionContext::new(&infcx).evaluate_obligation_conservatively(&obligation) } /// Match an `Expr` against a chain of methods, and return the matched `Expr`s. /// /// For example, if `expr` represents the `.baz()` in `foo.bar().baz()`, /// `matched_method_chain(expr, &["bar", "baz"])` will return a `Vec` containing the `Expr`s for /// `.bar()` and `.baz()` pub fn method_chain_args<'a>(expr: &'a Expr, methods: &[&str]) -> Option> { let mut current = expr; let mut matched = Vec::with_capacity(methods.len()); for method_name in methods.iter().rev() { // method chains are stored last -> first if let ExprMethodCall(ref name, _, ref args) = current.node { if name.node.as_str() == *method_name { matched.push(args); // build up `matched` backwards current = &args[0] // go to parent expression } else { return None; } } else { return None; } } matched.reverse(); // reverse `matched`, so that it is in the same order as `methods` Some(matched) } /// Get the name of the item the expression is in, if available. pub fn get_item_name(cx: &LateContext, expr: &Expr) -> Option { let parent_id = cx.tcx.map.get_parent(expr.id); match cx.tcx.map.find(parent_id) { Some(Node::NodeItem(&Item{ ref name, .. })) | Some(Node::NodeTraitItem(&TraitItem{ ref name, .. })) | Some(Node::NodeImplItem(&ImplItem{ ref name, .. })) => Some(*name), _ => None, } } /// Checks if a `let` decl is from a `for` loop desugaring. pub fn is_from_for_desugar(decl: &Decl) -> bool { if_let_chain! { [ let DeclLocal(ref loc) = decl.node, let Some(ref expr) = loc.init, let ExprMatch(_, _, MatchSource::ForLoopDesugar) = expr.node ], { return true; } }; false } /// Convert a span to a code snippet if available, otherwise use default. /// /// # Example /// ``` /// snippet(cx, expr.span, "..") /// ``` pub fn snippet<'a, T: LintContext>(cx: &T, span: Span, default: &'a str) -> Cow<'a, str> { cx.sess().codemap().span_to_snippet(span).map(From::from).unwrap_or_else(|_| Cow::Borrowed(default)) } /// Convert a span to a code snippet. Returns `None` if not available. pub fn snippet_opt(cx: &T, span: Span) -> Option { cx.sess().codemap().span_to_snippet(span).ok() } /// Convert a span (from a block) to a code snippet if available, otherwise use default. /// This trims the code of indentation, except for the first line. Use it for blocks or block-like /// things which need to be printed as such. /// /// # Example /// ``` /// snippet(cx, expr.span, "..") /// ``` pub fn snippet_block<'a, T: LintContext>(cx: &T, span: Span, default: &'a str) -> Cow<'a, str> { let snip = snippet(cx, span, default); trim_multiline(snip, true) } /// Like `snippet_block`, but add braces if the expr is not an `ExprBlock`. /// Also takes an `Option` which can be put inside the braces. pub fn expr_block<'a, T: LintContext>(cx: &T, expr: &Expr, option: Option, default: &'a str) -> Cow<'a, str> { let code = snippet_block(cx, expr.span, default); let string = option.unwrap_or_default(); if let ExprBlock(_) = expr.node { Cow::Owned(format!("{}{}", code, string)) } else if string.is_empty() { Cow::Owned(format!("{{ {} }}", code)) } else { Cow::Owned(format!("{{\n{};\n{}\n}}", code, string)) } } /// Trim indentation from a multiline string with possibility of ignoring the first line. pub fn trim_multiline(s: Cow, ignore_first: bool) -> Cow { let s_space = trim_multiline_inner(s, ignore_first, ' '); let s_tab = trim_multiline_inner(s_space, ignore_first, '\t'); trim_multiline_inner(s_tab, ignore_first, ' ') } fn trim_multiline_inner(s: Cow, ignore_first: bool, ch: char) -> Cow { let x = s.lines() .skip(ignore_first as usize) .filter_map(|l| { if l.is_empty() { None } else { // ignore empty lines Some(l.char_indices() .find(|&(_, x)| x != ch) .unwrap_or((l.len(), ch)) .0) } }) .min() .unwrap_or(0); if x > 0 { Cow::Owned(s.lines() .enumerate() .map(|(i, l)| { if (ignore_first && i == 0) || l.is_empty() { l } else { l.split_at(x).1 } }) .collect::>() .join("\n")) } else { s } } /// Get a parent expressions if any – this is useful to constrain a lint. pub fn get_parent_expr<'c>(cx: &'c LateContext, e: &Expr) -> Option<&'c Expr> { let map = &cx.tcx.map; let node_id: NodeId = e.id; let parent_id: NodeId = map.get_parent_node(node_id); if node_id == parent_id { return None; } map.find(parent_id).and_then(|node| { if let Node::NodeExpr(parent) = node { Some(parent) } else { None } }) } pub fn get_enclosing_block<'c>(cx: &'c LateContext, node: NodeId) -> Option<&'c Block> { let map = &cx.tcx.map; let enclosing_node = map.get_enclosing_scope(node) .and_then(|enclosing_id| map.find(enclosing_id)); if let Some(node) = enclosing_node { match node { Node::NodeBlock(ref block) => Some(block), Node::NodeItem(&Item{ node: ItemFn(_, _, _, _, _, ref block), .. }) => Some(block), _ => None, } } else { None } } pub struct DiagnosticWrapper<'a>(pub DiagnosticBuilder<'a>); impl<'a> Drop for DiagnosticWrapper<'a> { fn drop(&mut self) { self.0.emit(); } } impl<'a> DerefMut for DiagnosticWrapper<'a> { fn deref_mut(&mut self) -> &mut DiagnosticBuilder<'a> { &mut self.0 } } impl<'a> Deref for DiagnosticWrapper<'a> { type Target = DiagnosticBuilder<'a>; fn deref(&self) -> &DiagnosticBuilder<'a> { &self.0 } } pub fn span_lint<'a, T: LintContext>(cx: &'a T, lint: &'static Lint, sp: Span, msg: &str) -> DiagnosticWrapper<'a> { let mut db = cx.struct_span_lint(lint, sp, msg); if cx.current_level(lint) != Level::Allow { db.fileline_help(sp, &format!("for further information visit https://github.com/Manishearth/rust-clippy/wiki#{}", lint.name_lower())); } DiagnosticWrapper(db) } pub fn span_help_and_lint<'a, T: LintContext>(cx: &'a T, lint: &'static Lint, span: Span, msg: &str, help: &str) -> DiagnosticWrapper<'a> { let mut db = cx.struct_span_lint(lint, span, msg); if cx.current_level(lint) != Level::Allow { db.fileline_help(span, &format!("{}\nfor further information visit \ https://github.com/Manishearth/rust-clippy/wiki#{}", help, lint.name_lower())); } DiagnosticWrapper(db) } pub fn span_note_and_lint<'a, T: LintContext>(cx: &'a T, lint: &'static Lint, span: Span, msg: &str, note_span: Span, note: &str) -> DiagnosticWrapper<'a> { let mut db = cx.struct_span_lint(lint, span, msg); if cx.current_level(lint) != Level::Allow { if note_span == span { db.fileline_note(note_span, note); } else { db.span_note(note_span, note); } db.fileline_help(span, &format!("for further information visit https://github.com/Manishearth/rust-clippy/wiki#{}", lint.name_lower())); } DiagnosticWrapper(db) } pub fn span_lint_and_then<'a, T: LintContext, F>(cx: &'a T, lint: &'static Lint, sp: Span, msg: &str, f: F) -> DiagnosticWrapper<'a> where F: FnOnce(&mut DiagnosticWrapper) { let mut db = DiagnosticWrapper(cx.struct_span_lint(lint, sp, msg)); if cx.current_level(lint) != Level::Allow { f(&mut db); db.fileline_help(sp, &format!("for further information visit https://github.com/Manishearth/rust-clippy/wiki#{}", lint.name_lower())); } db } /// Return the base type for references and raw pointers. pub fn walk_ptrs_ty(ty: ty::Ty) -> ty::Ty { match ty.sty { ty::TyRef(_, ref tm) | ty::TyRawPtr(ref tm) => walk_ptrs_ty(tm.ty), _ => ty, } } /// Return the base type for references and raw pointers, and count reference depth. pub fn walk_ptrs_ty_depth(ty: ty::Ty) -> (ty::Ty, usize) { fn inner(ty: ty::Ty, depth: usize) -> (ty::Ty, usize) { match ty.sty { ty::TyRef(_, ref tm) | ty::TyRawPtr(ref tm) => inner(tm.ty, depth + 1), _ => (ty, depth), } } inner(ty, 0) } /// Check whether the given expression is a constant literal of the given value. pub fn is_integer_literal(expr: &Expr, value: u64) -> bool { // FIXME: use constant folding if let ExprLit(ref spanned) = expr.node { if let LitKind::Int(v, _) = spanned.node { return v == value; } } false } pub fn is_adjusted(cx: &LateContext, e: &Expr) -> bool { cx.tcx.tables.borrow().adjustments.get(&e.id).is_some() } pub struct LimitStack { stack: Vec, } impl Drop for LimitStack { fn drop(&mut self) { assert_eq!(self.stack.len(), 1); } } impl LimitStack { pub fn new(limit: u64) -> LimitStack { LimitStack { stack: vec![limit] } } pub fn limit(&self) -> u64 { *self.stack.last().expect("there should always be a value in the stack") } pub fn push_attrs(&mut self, sess: &Session, attrs: &[ast::Attribute], name: &'static str) { let stack = &mut self.stack; parse_attrs(sess, attrs, name, |val| stack.push(val)); } pub fn pop_attrs(&mut self, sess: &Session, attrs: &[ast::Attribute], name: &'static str) { let stack = &mut self.stack; parse_attrs(sess, attrs, name, |val| assert_eq!(stack.pop(), Some(val))); } } fn parse_attrs(sess: &Session, attrs: &[ast::Attribute], name: &'static str, mut f: F) { for attr in attrs { let attr = &attr.node; if attr.is_sugared_doc { continue; } if let ast::MetaItemKind::NameValue(ref key, ref value) = attr.value.node { if *key == name { if let LitKind::Str(ref s, _) = value.node { if let Ok(value) = FromStr::from_str(s) { f(value) } else { sess.span_err(value.span, "not a number"); } } else { unreachable!() } } } } } /// Return the pre-expansion span if is this comes from an expansion of the macro `name`. /// See also `is_direct_expn_of`. pub fn is_expn_of(cx: &LateContext, mut span: Span, name: &str) -> Option { loop { let span_name_span = cx.tcx .sess .codemap() .with_expn_info(span.expn_id, |expn| expn.map(|ei| (ei.callee.name(), ei.call_site))); match span_name_span { Some((mac_name, new_span)) if mac_name.as_str() == name => return Some(new_span), None => return None, Some((_, new_span)) => span = new_span, } } } /// Return the pre-expansion span if is this directly comes from an expansion of the macro `name`. /// The difference with `is_expn_of` is that in /// ```rust,ignore /// foo!(bar!(42)); /// ``` /// `42` is considered expanded from `foo!` and `bar!` by `is_expn_of` but only `bar!` by /// `is_direct_expn_of`. pub fn is_direct_expn_of(cx: &LateContext, span: Span, name: &str) -> Option { let span_name_span = cx.tcx .sess .codemap() .with_expn_info(span.expn_id, |expn| expn.map(|ei| (ei.callee.name(), ei.call_site))); match span_name_span { Some((mac_name, new_span)) if mac_name.as_str() == name => Some(new_span), _ => None, } } /// Return the index of the character after the first camel-case component of `s`. pub fn camel_case_until(s: &str) -> usize { let mut iter = s.char_indices(); if let Some((_, first)) = iter.next() { if !first.is_uppercase() { return 0; } } else { return 0; } let mut up = true; let mut last_i = 0; for (i, c) in iter { if up { if c.is_lowercase() { up = false; } else { return last_i; } } else if c.is_uppercase() { up = true; last_i = i; } else if !c.is_lowercase() { return i; } } if up { last_i } else { s.len() } } /// Return index of the last camel-case component of `s`. pub fn camel_case_from(s: &str) -> usize { let mut iter = s.char_indices().rev(); if let Some((_, first)) = iter.next() { if !first.is_lowercase() { return s.len(); } } else { return s.len(); } let mut down = true; let mut last_i = s.len(); for (i, c) in iter { if down { if c.is_uppercase() { down = false; last_i = i; } else if !c.is_lowercase() { return last_i; } } else if c.is_lowercase() { down = true; } else { return last_i; } } last_i } /// Represent a range akin to `ast::ExprKind::Range`. #[derive(Debug, Copy, Clone)] pub struct UnsugaredRange<'a> { pub start: Option<&'a Expr>, pub end: Option<&'a Expr>, pub limits: RangeLimits, } /// Unsugar a `hir` range. pub fn unsugar_range(expr: &Expr) -> Option { // To be removed when ranges get stable. fn unwrap_unstable(expr: &Expr) -> &Expr { if let ExprBlock(ref block) = expr.node { if block.rules == BlockCheckMode::PushUnstableBlock || block.rules == BlockCheckMode::PopUnstableBlock { if let Some(ref expr) = block.expr { return expr; } } } expr } fn get_field<'a>(name: &str, fields: &'a [Field]) -> Option<&'a Expr> { let expr = &fields.iter() .find(|field| field.name.node.as_str() == name) .unwrap_or_else(|| panic!("missing {} field for range", name)) .expr; Some(unwrap_unstable(expr)) } match unwrap_unstable(&expr).node { ExprPath(None, ref path) => { if match_path(path, &RANGE_FULL_PATH) { Some(UnsugaredRange { start: None, end: None, limits: RangeLimits::HalfOpen }) } else { None } } ExprStruct(ref path, ref fields, None) => { if match_path(path, &RANGE_FROM_PATH) { Some(UnsugaredRange { start: get_field("start", fields), end: None, limits: RangeLimits::HalfOpen }) } else if match_path(path, &RANGE_INCLUSIVE_NON_EMPTY_PATH) { Some(UnsugaredRange { start: get_field("start", fields), end: get_field("end", fields), limits: RangeLimits::Closed }) } else if match_path(path, &RANGE_PATH) { Some(UnsugaredRange { start: get_field("start", fields), end: get_field("end", fields), limits: RangeLimits::HalfOpen }) } else if match_path(path, &RANGE_TO_INCLUSIVE_PATH) { Some(UnsugaredRange { start: None, end: get_field("end", fields), limits: RangeLimits::Closed }) } else if match_path(path, &RANGE_TO_PATH) { Some(UnsugaredRange { start: None, end: get_field("end", fields), limits: RangeLimits::HalfOpen }) } else { None } } _ => None, } } /// Convenience function to get the return type of a function or `None` if the function diverges. pub fn return_ty<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, fn_item: NodeId) -> Option> { let parameter_env = ty::ParameterEnvironment::for_item(cx.tcx, fn_item); let fn_sig = cx.tcx.node_id_to_type(fn_item).fn_sig().subst(cx.tcx, ¶meter_env.free_substs); let fn_sig = cx.tcx.liberate_late_bound_regions(parameter_env.free_id_outlive, &fn_sig); if let ty::FnConverging(ret_ty) = fn_sig.output { Some(ret_ty) } else { None } } /// Check if two types are the same. // FIXME: this works correctly for lifetimes bounds (`for <'a> Foo<'a>` == `for <'b> Foo<'b>` but // not for type parameters. pub fn same_tys<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, a: ty::Ty<'tcx>, b: ty::Ty<'tcx>, parameter_item: NodeId) -> bool { let parameter_env = ty::ParameterEnvironment::for_item(cx.tcx, parameter_item); let infcx = infer::new_infer_ctxt(cx.tcx, &cx.tcx.tables, Some(parameter_env), ProjectionMode::Any); let new_a = a.subst(infcx.tcx, &infcx.parameter_environment.free_substs); let new_b = b.subst(infcx.tcx, &infcx.parameter_environment.free_substs); infcx.can_equate(&new_a, &new_b).is_ok() } /// Recover the essential nodes of a desugared for loop: /// `for pat in arg { body }` becomes `(pat, arg, body)`. pub fn recover_for_loop(expr: &Expr) -> Option<(&Pat, &Expr, &Expr)> { if_let_chain! { [ let ExprMatch(ref iterexpr, ref arms, _) = expr.node, let ExprCall(_, ref iterargs) = iterexpr.node, iterargs.len() == 1 && arms.len() == 1 && arms[0].guard.is_none(), let ExprLoop(ref block, _) = arms[0].body.node, block.stmts.is_empty(), let Some(ref loopexpr) = block.expr, let ExprMatch(_, ref innerarms, MatchSource::ForLoopDesugar) = loopexpr.node, innerarms.len() == 2 && innerarms[0].pats.len() == 1, let PatKind::TupleStruct(_, Some(ref somepats)) = innerarms[0].pats[0].node, somepats.len() == 1 ], { return Some((&somepats[0], &iterargs[0], &innerarms[0].body)); } } None }