use rustc_hir::{BorrowKind, Expr, ExprKind}; use rustc_lint::{LateContext, LateLintPass}; use rustc_session::{declare_lint_pass, declare_tool_lint}; use crate::utils::{get_trait_def_id, higher, implements_trait, match_qpath, match_type, paths, span_lint}; declare_clippy_lint! { /// **What it does:** Checks for iteration that is guaranteed to be infinite. /// /// **Why is this bad?** While there may be places where this is acceptable /// (e.g., in event streams), in most cases this is simply an error. /// /// **Known problems:** None. /// /// **Example:** /// ```no_run /// use std::iter; /// /// iter::repeat(1_u8).collect::>(); /// ``` pub INFINITE_ITER, correctness, "infinite iteration" } declare_clippy_lint! { /// **What it does:** Checks for iteration that may be infinite. /// /// **Why is this bad?** While there may be places where this is acceptable /// (e.g., in event streams), in most cases this is simply an error. /// /// **Known problems:** The code may have a condition to stop iteration, but /// this lint is not clever enough to analyze it. /// /// **Example:** /// ```rust /// let infinite_iter = 0..; /// [0..].iter().zip(infinite_iter.take_while(|x| *x > 5)); /// ``` pub MAYBE_INFINITE_ITER, pedantic, "possible infinite iteration" } declare_lint_pass!(InfiniteIter => [INFINITE_ITER, MAYBE_INFINITE_ITER]); impl<'a, 'tcx> LateLintPass<'a, 'tcx> for InfiniteIter { fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, expr: &'tcx Expr<'_>) { let (lint, msg) = match complete_infinite_iter(cx, expr) { Infinite => (INFINITE_ITER, "infinite iteration detected"), MaybeInfinite => (MAYBE_INFINITE_ITER, "possible infinite iteration detected"), Finite => { return; }, }; span_lint(cx, lint, expr.span, msg) } } #[derive(Copy, Clone, Debug, PartialEq, Eq)] enum Finiteness { Infinite, MaybeInfinite, Finite, } use self::Finiteness::{Finite, Infinite, MaybeInfinite}; impl Finiteness { #[must_use] fn and(self, b: Self) -> Self { match (self, b) { (Finite, _) | (_, Finite) => Finite, (MaybeInfinite, _) | (_, MaybeInfinite) => MaybeInfinite, _ => Infinite, } } #[must_use] fn or(self, b: Self) -> Self { match (self, b) { (Infinite, _) | (_, Infinite) => Infinite, (MaybeInfinite, _) | (_, MaybeInfinite) => MaybeInfinite, _ => Finite, } } } impl From for Finiteness { #[must_use] fn from(b: bool) -> Self { if b { Infinite } else { Finite } } } /// This tells us what to look for to know if the iterator returned by /// this method is infinite #[derive(Copy, Clone)] enum Heuristic { /// infinite no matter what Always, /// infinite if the first argument is First, /// infinite if any of the supplied arguments is Any, /// infinite if all of the supplied arguments are All, } use self::Heuristic::{All, Always, Any, First}; /// a slice of (method name, number of args, heuristic, bounds) tuples /// that will be used to determine whether the method in question /// returns an infinite or possibly infinite iterator. The finiteness /// is an upper bound, e.g., some methods can return a possibly /// infinite iterator at worst, e.g., `take_while`. const HEURISTICS: [(&str, usize, Heuristic, Finiteness); 19] = [ ("zip", 2, All, Infinite), ("chain", 2, Any, Infinite), ("cycle", 1, Always, Infinite), ("map", 2, First, Infinite), ("by_ref", 1, First, Infinite), ("cloned", 1, First, Infinite), ("rev", 1, First, Infinite), ("inspect", 1, First, Infinite), ("enumerate", 1, First, Infinite), ("peekable", 2, First, Infinite), ("fuse", 1, First, Infinite), ("skip", 2, First, Infinite), ("skip_while", 1, First, Infinite), ("filter", 2, First, Infinite), ("filter_map", 2, First, Infinite), ("flat_map", 2, First, Infinite), ("unzip", 1, First, Infinite), ("take_while", 2, First, MaybeInfinite), ("scan", 3, First, MaybeInfinite), ]; fn is_infinite(cx: &LateContext<'_, '_>, expr: &Expr<'_>) -> Finiteness { match expr.kind { ExprKind::MethodCall(ref method, _, ref args) => { for &(name, len, heuristic, cap) in &HEURISTICS { if method.ident.name.as_str() == name && args.len() == len { return (match heuristic { Always => Infinite, First => is_infinite(cx, &args[0]), Any => is_infinite(cx, &args[0]).or(is_infinite(cx, &args[1])), All => is_infinite(cx, &args[0]).and(is_infinite(cx, &args[1])), }) .and(cap); } } if method.ident.name == sym!(flat_map) && args.len() == 2 { if let ExprKind::Closure(_, _, body_id, _, _) = args[1].kind { let body = cx.tcx.hir().body(body_id); return is_infinite(cx, &body.value); } } Finite }, ExprKind::Block(ref block, _) => block.expr.as_ref().map_or(Finite, |e| is_infinite(cx, e)), ExprKind::Box(ref e) | ExprKind::AddrOf(BorrowKind::Ref, _, ref e) => is_infinite(cx, e), ExprKind::Call(ref path, _) => { if let ExprKind::Path(ref qpath) = path.kind { match_qpath(qpath, &paths::REPEAT).into() } else { Finite } }, ExprKind::Struct(..) => higher::range(cx, expr).map_or(false, |r| r.end.is_none()).into(), _ => Finite, } } /// the names and argument lengths of methods that *may* exhaust their /// iterators const POSSIBLY_COMPLETING_METHODS: [(&str, usize); 6] = [ ("find", 2), ("rfind", 2), ("position", 2), ("rposition", 2), ("any", 2), ("all", 2), ]; /// the names and argument lengths of methods that *always* exhaust /// their iterators const COMPLETING_METHODS: [(&str, usize); 12] = [ ("count", 1), ("fold", 3), ("for_each", 2), ("partition", 2), ("max", 1), ("max_by", 2), ("max_by_key", 2), ("min", 1), ("min_by", 2), ("min_by_key", 2), ("sum", 1), ("product", 1), ]; /// the paths of types that are known to be infinitely allocating const INFINITE_COLLECTORS: [&[&str]; 8] = [ &paths::BINARY_HEAP, &paths::BTREEMAP, &paths::BTREESET, &paths::HASHMAP, &paths::HASHSET, &paths::LINKED_LIST, &paths::VEC, &paths::VEC_DEQUE, ]; fn complete_infinite_iter(cx: &LateContext<'_, '_>, expr: &Expr<'_>) -> Finiteness { match expr.kind { ExprKind::MethodCall(ref method, _, ref args) => { for &(name, len) in &COMPLETING_METHODS { if method.ident.name.as_str() == name && args.len() == len { return is_infinite(cx, &args[0]); } } for &(name, len) in &POSSIBLY_COMPLETING_METHODS { if method.ident.name.as_str() == name && args.len() == len { return MaybeInfinite.and(is_infinite(cx, &args[0])); } } if method.ident.name == sym!(last) && args.len() == 1 { let not_double_ended = get_trait_def_id(cx, &paths::DOUBLE_ENDED_ITERATOR) .map_or(false, |id| !implements_trait(cx, cx.tables.expr_ty(&args[0]), id, &[])); if not_double_ended { return is_infinite(cx, &args[0]); } } else if method.ident.name == sym!(collect) { let ty = cx.tables.expr_ty(expr); if INFINITE_COLLECTORS.iter().any(|path| match_type(cx, ty, path)) { return is_infinite(cx, &args[0]); } } }, ExprKind::Binary(op, ref l, ref r) => { if op.node.is_comparison() { return is_infinite(cx, l).and(is_infinite(cx, r)).and(MaybeInfinite); } }, // TODO: ExprKind::Loop + Match _ => (), } Finite }