use crate::utils::{ eq_expr_value, implements_trait, in_macro, is_copy, multispan_sugg, snippet, span_lint, span_lint_and_then, }; use rustc_errors::Applicability; use rustc_hir::{BinOp, BinOpKind, BorrowKind, Expr, ExprKind}; use rustc_lint::{LateContext, LateLintPass}; use rustc_session::{declare_lint_pass, declare_tool_lint}; declare_clippy_lint! { /// **What it does:** Checks for equal operands to comparison, logical and /// bitwise, difference and division binary operators (`==`, `>`, etc., `&&`, /// `||`, `&`, `|`, `^`, `-` and `/`). /// /// **Why is this bad?** This is usually just a typo or a copy and paste error. /// /// **Known problems:** False negatives: We had some false positives regarding /// calls (notably [racer](https://github.com/phildawes/racer) had one instance /// of `x.pop() && x.pop()`), so we removed matching any function or method /// calls. We may introduce a list of known pure functions in the future. /// /// **Example:** /// ```rust /// # let x = 1; /// if x + 1 == x + 1 {} /// ``` pub EQ_OP, correctness, "equal operands on both sides of a comparison or bitwise combination (e.g., `x == x`)" } declare_clippy_lint! { /// **What it does:** Checks for arguments to `==` which have their address /// taken to satisfy a bound /// and suggests to dereference the other argument instead /// /// **Why is this bad?** It is more idiomatic to dereference the other argument. /// /// **Known problems:** None /// /// **Example:** /// ```ignore /// // Bad /// &x == y /// /// // Good /// x == *y /// ``` pub OP_REF, style, "taking a reference to satisfy the type constraints on `==`" } declare_lint_pass!(EqOp => [EQ_OP, OP_REF]); impl<'tcx> LateLintPass<'tcx> for EqOp { #[allow(clippy::similar_names, clippy::too_many_lines)] fn check_expr(&mut self, cx: &LateContext<'tcx>, e: &'tcx Expr<'_>) { if let ExprKind::Binary(op, ref left, ref right) = e.kind { if e.span.from_expansion() { return; } let macro_with_not_op = |expr_kind: &ExprKind<'_>| { if let ExprKind::Unary(_, ref expr) = *expr_kind { in_macro(expr.span) } else { false } }; if macro_with_not_op(&left.kind) || macro_with_not_op(&right.kind) { return; } if is_valid_operator(op) && eq_expr_value(cx, left, right) { span_lint( cx, EQ_OP, e.span, &format!("equal expressions as operands to `{}`", op.node.as_str()), ); return; } let (trait_id, requires_ref) = match op.node { BinOpKind::Add => (cx.tcx.lang_items().add_trait(), false), BinOpKind::Sub => (cx.tcx.lang_items().sub_trait(), false), BinOpKind::Mul => (cx.tcx.lang_items().mul_trait(), false), BinOpKind::Div => (cx.tcx.lang_items().div_trait(), false), BinOpKind::Rem => (cx.tcx.lang_items().rem_trait(), false), // don't lint short circuiting ops BinOpKind::And | BinOpKind::Or => return, BinOpKind::BitXor => (cx.tcx.lang_items().bitxor_trait(), false), BinOpKind::BitAnd => (cx.tcx.lang_items().bitand_trait(), false), BinOpKind::BitOr => (cx.tcx.lang_items().bitor_trait(), false), BinOpKind::Shl => (cx.tcx.lang_items().shl_trait(), false), BinOpKind::Shr => (cx.tcx.lang_items().shr_trait(), false), BinOpKind::Ne | BinOpKind::Eq => (cx.tcx.lang_items().eq_trait(), true), BinOpKind::Lt | BinOpKind::Le | BinOpKind::Ge | BinOpKind::Gt => { (cx.tcx.lang_items().partial_ord_trait(), true) }, }; if let Some(trait_id) = trait_id { #[allow(clippy::match_same_arms)] match (&left.kind, &right.kind) { // do not suggest to dereference literals (&ExprKind::Lit(..), _) | (_, &ExprKind::Lit(..)) => {}, // &foo == &bar (&ExprKind::AddrOf(BorrowKind::Ref, _, ref l), &ExprKind::AddrOf(BorrowKind::Ref, _, ref r)) => { let lty = cx.typeck_results().expr_ty(l); let rty = cx.typeck_results().expr_ty(r); let lcpy = is_copy(cx, lty); let rcpy = is_copy(cx, rty); // either operator autorefs or both args are copyable if (requires_ref || (lcpy && rcpy)) && implements_trait(cx, lty, trait_id, &[rty.into()]) { span_lint_and_then( cx, OP_REF, e.span, "needlessly taken reference of both operands", |diag| { let lsnip = snippet(cx, l.span, "...").to_string(); let rsnip = snippet(cx, r.span, "...").to_string(); multispan_sugg( diag, "use the values directly", vec![(left.span, lsnip), (right.span, rsnip)], ); }, ) } else if lcpy && !rcpy && implements_trait(cx, lty, trait_id, &[cx.typeck_results().expr_ty(right).into()]) { span_lint_and_then( cx, OP_REF, e.span, "needlessly taken reference of left operand", |diag| { let lsnip = snippet(cx, l.span, "...").to_string(); diag.span_suggestion( left.span, "use the left value directly", lsnip, Applicability::MaybeIncorrect, // FIXME #2597 ); }, ) } else if !lcpy && rcpy && implements_trait(cx, cx.typeck_results().expr_ty(left), trait_id, &[rty.into()]) { span_lint_and_then( cx, OP_REF, e.span, "needlessly taken reference of right operand", |diag| { let rsnip = snippet(cx, r.span, "...").to_string(); diag.span_suggestion( right.span, "use the right value directly", rsnip, Applicability::MaybeIncorrect, // FIXME #2597 ); }, ) } }, // &foo == bar (&ExprKind::AddrOf(BorrowKind::Ref, _, ref l), _) => { let lty = cx.typeck_results().expr_ty(l); let lcpy = is_copy(cx, lty); if (requires_ref || lcpy) && implements_trait(cx, lty, trait_id, &[cx.typeck_results().expr_ty(right).into()]) { span_lint_and_then( cx, OP_REF, e.span, "needlessly taken reference of left operand", |diag| { let lsnip = snippet(cx, l.span, "...").to_string(); diag.span_suggestion( left.span, "use the left value directly", lsnip, Applicability::MaybeIncorrect, // FIXME #2597 ); }, ) } }, // foo == &bar (_, &ExprKind::AddrOf(BorrowKind::Ref, _, ref r)) => { let rty = cx.typeck_results().expr_ty(r); let rcpy = is_copy(cx, rty); if (requires_ref || rcpy) && implements_trait(cx, cx.typeck_results().expr_ty(left), trait_id, &[rty.into()]) { span_lint_and_then(cx, OP_REF, e.span, "taken reference of right operand", |diag| { let rsnip = snippet(cx, r.span, "...").to_string(); diag.span_suggestion( right.span, "use the right value directly", rsnip, Applicability::MaybeIncorrect, // FIXME #2597 ); }) } }, _ => {}, } } } } } fn is_valid_operator(op: BinOp) -> bool { matches!( op.node, BinOpKind::Sub | BinOpKind::Div | BinOpKind::Eq | BinOpKind::Lt | BinOpKind::Le | BinOpKind::Gt | BinOpKind::Ge | BinOpKind::Ne | BinOpKind::And | BinOpKind::Or | BinOpKind::BitXor | BinOpKind::BitAnd | BinOpKind::BitOr ) }