//! lint on manually implemented checked conversions that could be transformed into `try_from` use if_chain::if_chain; use rustc::hir::*; use rustc::lint::{in_external_macro, LateContext, LateLintPass, LintArray, LintContext, LintPass}; use rustc::{declare_lint_pass, declare_tool_lint}; use rustc_errors::Applicability; use syntax::ast::LitKind; use crate::utils::{snippet_with_applicability, span_lint_and_sugg, SpanlessEq}; declare_clippy_lint! { /// **What it does:** Checks for explicit bounds checking when casting. /// /// **Why is this bad?** Reduces the readability of statements & is error prone. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// # let foo: u32 = 5; /// # let _ = /// foo <= i32::max_value() as u32 /// # ; /// ``` /// /// Could be written: /// /// ```rust /// # let _ = /// i32::try_from(foo).is_ok() /// # ; /// ``` pub CHECKED_CONVERSIONS, pedantic, "`try_from` could replace manual bounds checking when casting" } declare_lint_pass!(CheckedConversions => [CHECKED_CONVERSIONS]); impl<'a, 'tcx> LateLintPass<'a, 'tcx> for CheckedConversions { fn check_expr(&mut self, cx: &LateContext<'_, '_>, item: &Expr) { let result = if_chain! { if !in_external_macro(cx.sess(), item.span); if let ExprKind::Binary(op, ref left, ref right) = &item.node; then { match op.node { BinOpKind::Ge | BinOpKind::Le => single_check(item), BinOpKind::And => double_check(cx, left, right), _ => None, } } else { None } }; if_chain! { if let Some(cv) = result; if let Some(to_type) = cv.to_type; then { let mut applicability = Applicability::MachineApplicable; let snippet = snippet_with_applicability(cx, cv.expr_to_cast.span, "_", &mut applicability); span_lint_and_sugg( cx, CHECKED_CONVERSIONS, item.span, "Checked cast can be simplified.", "try", format!("{}::try_from({}).is_ok()", to_type, snippet), applicability ); } } } } /// Searches for a single check from unsigned to _ is done /// todo: check for case signed -> larger unsigned == only x >= 0 fn single_check(expr: &Expr) -> Option> { check_upper_bound(expr).filter(|cv| cv.cvt == ConversionType::FromUnsigned) } /// Searches for a combination of upper & lower bound checks fn double_check<'a>(cx: &LateContext<'_, '_>, left: &'a Expr, right: &'a Expr) -> Option> { let upper_lower = |l, r| { let upper = check_upper_bound(l); let lower = check_lower_bound(r); transpose(upper, lower).and_then(|(l, r)| l.combine(r, cx)) }; upper_lower(left, right).or_else(|| upper_lower(right, left)) } /// Contains the result of a tried conversion check #[derive(Clone, Debug)] struct Conversion<'a> { cvt: ConversionType, expr_to_cast: &'a Expr, to_type: Option<&'a str>, } /// The kind of conversion that is checked #[derive(Copy, Clone, Debug, PartialEq)] enum ConversionType { SignedToUnsigned, SignedToSigned, FromUnsigned, } impl<'a> Conversion<'a> { /// Combine multiple conversions if the are compatible pub fn combine(self, other: Self, cx: &LateContext<'_, '_>) -> Option> { if self.is_compatible(&other, cx) { // Prefer a Conversion that contains a type-constraint Some(if self.to_type.is_some() { self } else { other }) } else { None } } /// Checks if two conversions are compatible /// same type of conversion, same 'castee' and same 'to type' pub fn is_compatible(&self, other: &Self, cx: &LateContext<'_, '_>) -> bool { (self.cvt == other.cvt) && (SpanlessEq::new(cx).eq_expr(self.expr_to_cast, other.expr_to_cast)) && (self.has_compatible_to_type(other)) } /// Checks if the to-type is the same (if there is a type constraint) fn has_compatible_to_type(&self, other: &Self) -> bool { transpose(self.to_type.as_ref(), other.to_type.as_ref()).map_or(true, |(l, r)| l == r) } /// Try to construct a new conversion if the conversion type is valid fn try_new(expr_to_cast: &'a Expr, from_type: &str, to_type: &'a str) -> Option> { ConversionType::try_new(from_type, to_type).map(|cvt| Conversion { cvt, expr_to_cast, to_type: Some(to_type), }) } /// Construct a new conversion without type constraint fn new_any(expr_to_cast: &'a Expr) -> Conversion<'a> { Conversion { cvt: ConversionType::SignedToUnsigned, expr_to_cast, to_type: None, } } } impl ConversionType { /// Creates a conversion type if the type is allowed & conversion is valid fn try_new(from: &str, to: &str) -> Option { if UINTS.contains(&from) { Some(Self::FromUnsigned) } else if SINTS.contains(&from) { if UINTS.contains(&to) { Some(Self::SignedToUnsigned) } else if SINTS.contains(&to) { Some(Self::SignedToSigned) } else { None } } else { None } } } /// Check for `expr <= (to_type::max_value() as from_type)` fn check_upper_bound(expr: &Expr) -> Option> { if_chain! { if let ExprKind::Binary(ref op, ref left, ref right) = &expr.node; if let Some((candidate, check)) = normalize_le_ge(op, left, right); if let Some((from, to)) = get_types_from_cast(check, MAX_VALUE, INTS); then { Conversion::try_new(candidate, from, to) } else { None } } } /// Check for `expr >= 0|(to_type::min_value() as from_type)` fn check_lower_bound(expr: &Expr) -> Option> { fn check_function<'a>(candidate: &'a Expr, check: &'a Expr) -> Option> { (check_lower_bound_zero(candidate, check)).or_else(|| (check_lower_bound_min(candidate, check))) } // First of we need a binary containing the expression & the cast if let ExprKind::Binary(ref op, ref left, ref right) = &expr.node { normalize_le_ge(op, right, left).and_then(|(l, r)| check_function(l, r)) } else { None } } /// Check for `expr >= 0` fn check_lower_bound_zero<'a>(candidate: &'a Expr, check: &'a Expr) -> Option> { if_chain! { if let ExprKind::Lit(ref lit) = &check.node; if let LitKind::Int(0, _) = &lit.node; then { Some(Conversion::new_any(candidate)) } else { None } } } /// Check for `expr >= (to_type::min_value() as from_type)` fn check_lower_bound_min<'a>(candidate: &'a Expr, check: &'a Expr) -> Option> { if let Some((from, to)) = get_types_from_cast(check, MIN_VALUE, SINTS) { Conversion::try_new(candidate, from, to) } else { None } } /// Tries to extract the from- and to-type from a cast expression fn get_types_from_cast<'a>(expr: &'a Expr, func: &'a str, types: &'a [&str]) -> Option<(&'a str, &'a str)> { // `to_type::maxmin_value() as from_type` let call_from_cast: Option<(&Expr, &str)> = if_chain! { // to_type::maxmin_value(), from_type if let ExprKind::Cast(ref limit, ref from_type) = &expr.node; if let TyKind::Path(ref from_type_path) = &from_type.node; if let Some(from_sym) = int_ty_to_sym(from_type_path); then { Some((limit, from_sym)) } else { None } }; // `from_type::from(to_type::maxmin_value())` let limit_from: Option<(&Expr, &str)> = call_from_cast.or_else(|| { if_chain! { // `from_type::from, to_type::maxmin_value()` if let ExprKind::Call(ref from_func, ref args) = &expr.node; // `to_type::maxmin_value()` if args.len() == 1; if let limit = &args[0]; // `from_type::from` if let ExprKind::Path(ref path) = &from_func.node; if let Some(from_sym) = get_implementing_type(path, INTS, FROM); then { Some((limit, from_sym)) } else { None } } }); if let Some((limit, from_type)) = limit_from { if_chain! { if let ExprKind::Call(ref fun_name, _) = &limit.node; // `to_type, maxmin_value` if let ExprKind::Path(ref path) = &fun_name.node; // `to_type` if let Some(to_type) = get_implementing_type(path, types, func); then { Some((from_type, to_type)) } else { None } } } else { None } } /// Gets the type which implements the called function fn get_implementing_type<'a>(path: &QPath, candidates: &'a [&str], function: &str) -> Option<&'a str> { if_chain! { if let QPath::TypeRelative(ref ty, ref path) = &path; if path.ident.name.as_str() == function; if let TyKind::Path(QPath::Resolved(None, ref tp)) = &ty.node; if let [int] = &*tp.segments; let name = &int.ident.name.as_str(); then { candidates.iter().find(|c| name == *c).cloned() } else { None } } } /// Gets the type as a string, if it is a supported integer fn int_ty_to_sym(path: &QPath) -> Option<&str> { if_chain! { if let QPath::Resolved(_, ref path) = *path; if let [ty] = &*path.segments; let name = &ty.ident.name.as_str(); then { INTS.iter().find(|c| name == *c).cloned() } else { None } } } /// (Option, Option) -> Option<(T, U)> fn transpose(lhs: Option, rhs: Option) -> Option<(T, U)> { match (lhs, rhs) { (Some(l), Some(r)) => Some((l, r)), _ => None, } } /// Will return the expressions as if they were expr1 <= expr2 fn normalize_le_ge<'a>(op: &BinOp, left: &'a Expr, right: &'a Expr) -> Option<(&'a Expr, &'a Expr)> { match op.node { BinOpKind::Le => Some((left, right)), BinOpKind::Ge => Some((right, left)), _ => None, } } // Constants const FROM: &str = "from"; const MAX_VALUE: &str = "max_value"; const MIN_VALUE: &str = "min_value"; const UINTS: &[&str] = &["u8", "u16", "u32", "u64", "usize"]; const SINTS: &[&str] = &["i8", "i16", "i32", "i64", "isize"]; const INTS: &[&str] = &["u8", "u16", "u32", "u64", "usize", "i8", "i16", "i32", "i64", "isize"];