use rustc::lint::*; use syntax::ast::*; use syntax::codemap::{ExpnInfo, Span}; use rustc::ast_map::Node::NodeExpr; use rustc::middle::ty; use std::borrow::Cow; // module DefPaths for certain structs/enums we check for pub const OPTION_PATH: [&'static str; 3] = ["core", "option", "Option"]; pub const RESULT_PATH: [&'static str; 3] = ["core", "result", "Result"]; pub const STRING_PATH: [&'static str; 3] = ["collections", "string", "String"]; pub const VEC_PATH: [&'static str; 3] = ["collections", "vec", "Vec"]; pub const LL_PATH: [&'static str; 3] = ["collections", "linked_list", "LinkedList"]; /// returns true if the macro that expanded the crate was outside of /// the current crate or was a compiler plugin pub fn in_macro(cx: &Context, opt_info: Option<&ExpnInfo>) -> bool { // no ExpnInfo = no macro opt_info.map_or(false, |info| { // no span for the callee = external macro info.callee.span.map_or(true, |span| { // no snippet = external macro or compiler-builtin expansion cx.sess().codemap().span_to_snippet(span).ok().map_or(true, |code| // macro doesn't start with "macro_rules" // = compiler plugin !code.starts_with("macro_rules") ) }) }) } /// invokes in_macro with the expansion info of the given span pub fn in_external_macro(cx: &Context, span: Span) -> bool { cx.sess().codemap().with_expn_info(span.expn_id, |info| in_macro(cx, info)) } /// check if a DefId's path matches the given absolute type path /// usage e.g. with /// `match_def_path(cx, id, &["core", "option", "Option"])` pub fn match_def_path(cx: &Context, def_id: DefId, path: &[&str]) -> bool { cx.tcx.with_path(def_id, |iter| iter.map(|elem| elem.name()) .zip(path.iter()).all(|(nm, p)| nm == p)) } /// check if type is struct or enum type with given def path pub fn match_type(cx: &Context, ty: ty::Ty, path: &[&str]) -> bool { match ty.sty { ty::TyEnum(ref adt, _) | ty::TyStruct(ref adt, _) => { match_def_path(cx, adt.did, path) } _ => { false } } } /// check if method call given in "expr" belongs to given trait pub fn match_trait_method(cx: &Context, expr: &Expr, path: &[&str]) -> bool { let method_call = ty::MethodCall::expr(expr.id); let trt_id = cx.tcx.tables .borrow().method_map.get(&method_call) .and_then(|callee| cx.tcx.trait_of_item(callee.def_id)); if let Some(trt_id) = trt_id { match_def_path(cx, trt_id, path) } else { false } } /// match a Path against a slice of segment string literals, e.g. /// `match_path(path, &["std", "rt", "begin_unwind"])` pub fn match_path(path: &Path, segments: &[&str]) -> bool { path.segments.iter().rev().zip(segments.iter().rev()).all( |(a, b)| &a.identifier.name == b) } /// convert a span to a code snippet if available, otherwise use default, e.g. /// `snippet(cx, expr.span, "..")` pub fn snippet<'a>(cx: &Context, span: Span, default: &'a str) -> Cow<'a, str> { cx.sess().codemap().span_to_snippet(span).map(From::from).unwrap_or(Cow::Borrowed(default)) } /// convert a span (from a block) to a code snippet if available, otherwise use default, e.g. /// `snippet(cx, expr.span, "..")` /// This trims the code of indentation, except for the first line /// Use it for blocks or block-like things which need to be printed as such pub fn snippet_block<'a>(cx: &Context, span: Span, default: &'a str) -> Cow<'a, str> { let snip = snippet(cx, span, default); trim_multiline(snip, true) } /// Trim indentation from a multiline string /// with possibility of ignoring the first line pub fn trim_multiline(s: Cow, ignore_first: bool) -> Cow { let s_space = trim_multiline_inner(s, ignore_first, ' '); let s_tab = trim_multiline_inner(s_space, ignore_first, '\t'); trim_multiline_inner(s_tab, ignore_first, ' ') } fn trim_multiline_inner(s: Cow, ignore_first: bool, ch: char) -> Cow { let x = s.lines().skip(ignore_first as usize) .filter_map(|l| { if l.len() > 0 { // ignore empty lines Some(l.char_indices() .find(|&(_,x)| x != ch) .unwrap_or((l.len(), ch)).0) } else {None}}) .min().unwrap_or(0); if x > 0 { Cow::Owned(s.lines().enumerate().map(|(i,l)| if (ignore_first && i == 0) || l.len() == 0 { l } else { l.split_at(x).1 }).collect::>() .join("\n")) } else { s } } /// get a parent expr if any – this is useful to constrain a lint pub fn get_parent_expr<'c>(cx: &'c Context, e: &Expr) -> Option<&'c Expr> { let map = &cx.tcx.map; let node_id : NodeId = e.id; let parent_id : NodeId = map.get_parent_node(node_id); if node_id == parent_id { return None; } map.find(parent_id).and_then(|node| if let NodeExpr(parent) = node { Some(parent) } else { None } ) } #[cfg(not(feature="structured_logging"))] pub fn span_lint(cx: &Context, lint: &'static Lint, sp: Span, msg: &str) { cx.span_lint(lint, sp, msg); } #[cfg(feature="structured_logging")] pub fn span_lint(cx: &Context, lint: &'static Lint, sp: Span, msg: &str) { // lint.name / lint.desc is can give details of the lint // cx.sess().codemap() has all these nice functions for line/column/snippet details // http://doc.rust-lang.org/syntax/codemap/struct.CodeMap.html#method.span_to_string cx.span_lint(lint, sp, msg); } pub fn span_help_and_lint(cx: &Context, lint: &'static Lint, span: Span, msg: &str, help: &str) { span_lint(cx, lint, span, msg); if cx.current_level(lint) != Level::Allow { cx.sess().fileline_help(span, help); } } /// return the base type for references and raw pointers pub fn walk_ptrs_ty(ty: ty::Ty) -> ty::Ty { match ty.sty { ty::TyRef(_, ref tm) | ty::TyRawPtr(ref tm) => walk_ptrs_ty(tm.ty), _ => ty } } /// Produce a nested chain of if-lets and ifs from the patterns: /// /// if_let_chain! { /// [ /// Some(y) = x, /// y.len() == 2, /// Some(z) = y, /// ], /// { /// block /// } /// } /// /// becomes /// /// if let Some(y) = x { /// if y.len() == 2 { /// if let Some(z) = y { /// block /// } /// } /// } #[macro_export] macro_rules! if_let_chain { ([let $pat:pat = $expr:expr, $($tt:tt)+], $block:block) => { if let $pat = $expr { if_let_chain!{ [$($tt)+], $block } } }; ([let $pat:pat = $expr:expr], $block:block) => { if let $pat = $expr { $block } }; ([$expr:expr, $($tt:tt)+], $block:block) => { if $expr { if_let_chain!{ [$($tt)+], $block } } }; ([$expr:expr], $block:block) => { if $expr { $block } }; }