#![allow(cast_possible_truncation)] use rustc::lint::LateContext; use rustc::hir::def::{Def, PathResolution}; use rustc_const_eval::lookup_const_by_id; use rustc_const_math::{ConstInt, ConstUsize, ConstIsize}; use rustc::hir::*; use std::cmp::Ordering::{self, Equal}; use std::cmp::PartialOrd; use std::hash::{Hash, Hasher}; use std::mem; use std::ops::Deref; use std::rc::Rc; use syntax::ast::{FloatTy, LitIntType, LitKind, StrStyle, UintTy, IntTy}; use syntax::ptr::P; #[derive(Debug, Copy, Clone)] pub enum FloatWidth { F32, F64, Any, } impl From for FloatWidth { fn from(ty: FloatTy) -> FloatWidth { match ty { FloatTy::F32 => FloatWidth::F32, FloatTy::F64 => FloatWidth::F64, } } } /// A `LitKind`-like enum to fold constant `Expr`s into. #[derive(Debug, Clone)] pub enum Constant { /// a String "abc" Str(String, StrStyle), /// a Binary String b"abc" Binary(Rc>), /// a single char 'a' Char(char), /// an integer, third argument is whether the value is negated Int(ConstInt), /// a float with given type Float(String, FloatWidth), /// true or false Bool(bool), /// an array of constants Vec(Vec), /// also an array, but with only one constant, repeated N times Repeat(Box, usize), /// a tuple of constants Tuple(Vec), } impl Constant { /// convert to u64 if possible /// /// # panics /// /// if the constant could not be converted to u64 losslessly fn as_u64(&self) -> u64 { if let Constant::Int(val) = *self { val.to_u64().expect("negative constant can't be casted to u64") } else { panic!("Could not convert a {:?} to u64", self); } } /// convert this constant to a f64, if possible #[allow(cast_precision_loss, cast_possible_wrap)] pub fn as_float(&self) -> Option { match *self { Constant::Float(ref s, _) => s.parse().ok(), Constant::Int(i) if i.is_negative() => Some(i.to_u64_unchecked() as i64 as f64), Constant::Int(i) => Some(i.to_u64_unchecked() as f64), _ => None, } } } impl PartialEq for Constant { fn eq(&self, other: &Constant) -> bool { match (self, other) { (&Constant::Str(ref ls, ref l_sty), &Constant::Str(ref rs, ref r_sty)) => ls == rs && l_sty == r_sty, (&Constant::Binary(ref l), &Constant::Binary(ref r)) => l == r, (&Constant::Char(l), &Constant::Char(r)) => l == r, (&Constant::Int(l), &Constant::Int(r)) => { l.is_negative() == r.is_negative() && l.to_u64_unchecked() == r.to_u64_unchecked() } (&Constant::Float(ref ls, _), &Constant::Float(ref rs, _)) => { // we want `Fw32 == FwAny` and `FwAny == Fw64`, by transitivity we must have // `Fw32 == Fw64` so don’t compare them match (ls.parse::(), rs.parse::()) { (Ok(l), Ok(r)) => l.eq(&r), _ => false, } } (&Constant::Bool(l), &Constant::Bool(r)) => l == r, (&Constant::Vec(ref l), &Constant::Vec(ref r)) => l == r, (&Constant::Repeat(ref lv, ref ls), &Constant::Repeat(ref rv, ref rs)) => ls == rs && lv == rv, (&Constant::Tuple(ref l), &Constant::Tuple(ref r)) => l == r, _ => false, //TODO: Are there inter-type equalities? } } } impl Hash for Constant { fn hash(&self, state: &mut H) where H: Hasher { match *self { Constant::Str(ref s, ref k) => { s.hash(state); k.hash(state); } Constant::Binary(ref b) => { b.hash(state); } Constant::Char(c) => { c.hash(state); } Constant::Int(i) => { i.to_u64_unchecked().hash(state); i.is_negative().hash(state); } Constant::Float(ref f, _) => { // don’t use the width here because of PartialEq implementation if let Ok(f) = f.parse::() { unsafe { mem::transmute::(f) }.hash(state); } } Constant::Bool(b) => { b.hash(state); } Constant::Vec(ref v) | Constant::Tuple(ref v) => { v.hash(state); } Constant::Repeat(ref c, l) => { c.hash(state); l.hash(state); } } } } impl PartialOrd for Constant { fn partial_cmp(&self, other: &Constant) -> Option { match (self, other) { (&Constant::Str(ref ls, ref l_sty), &Constant::Str(ref rs, ref r_sty)) => { if l_sty == r_sty { Some(ls.cmp(rs)) } else { None } } (&Constant::Char(ref l), &Constant::Char(ref r)) => Some(l.cmp(r)), (&Constant::Int(l), &Constant::Int(r)) => Some(l.cmp(&r)), (&Constant::Float(ref ls, _), &Constant::Float(ref rs, _)) => { match (ls.parse::(), rs.parse::()) { (Ok(ref l), Ok(ref r)) => l.partial_cmp(r), _ => None, } } (&Constant::Bool(ref l), &Constant::Bool(ref r)) => Some(l.cmp(r)), (&Constant::Tuple(ref l), &Constant::Tuple(ref r)) | (&Constant::Vec(ref l), &Constant::Vec(ref r)) => l.partial_cmp(r), (&Constant::Repeat(ref lv, ref ls), &Constant::Repeat(ref rv, ref rs)) => { match lv.partial_cmp(rv) { Some(Equal) => Some(ls.cmp(rs)), x => x, } } _ => None, //TODO: Are there any useful inter-type orderings? } } } /// parse a `LitKind` to a `Constant` #[allow(cast_possible_wrap)] pub fn lit_to_constant(lit: &LitKind) -> Constant { match *lit { LitKind::Str(ref is, style) => Constant::Str(is.to_string(), style), LitKind::Byte(b) => Constant::Int(ConstInt::U8(b)), LitKind::ByteStr(ref s) => Constant::Binary(s.clone()), LitKind::Char(c) => Constant::Char(c), LitKind::Int(value, LitIntType::Unsuffixed) => Constant::Int(ConstInt::Infer(value)), LitKind::Int(value, LitIntType::Unsigned(UintTy::U8)) => Constant::Int(ConstInt::U8(value as u8)), LitKind::Int(value, LitIntType::Unsigned(UintTy::U16)) => Constant::Int(ConstInt::U16(value as u16)), LitKind::Int(value, LitIntType::Unsigned(UintTy::U32)) => Constant::Int(ConstInt::U32(value as u32)), LitKind::Int(value, LitIntType::Unsigned(UintTy::U64)) => Constant::Int(ConstInt::U64(value as u64)), LitKind::Int(value, LitIntType::Unsigned(UintTy::Us)) => { Constant::Int(ConstInt::Usize(ConstUsize::Us32(value as u32))) } LitKind::Int(value, LitIntType::Signed(IntTy::I8)) => Constant::Int(ConstInt::I8(value as i8)), LitKind::Int(value, LitIntType::Signed(IntTy::I16)) => Constant::Int(ConstInt::I16(value as i16)), LitKind::Int(value, LitIntType::Signed(IntTy::I32)) => Constant::Int(ConstInt::I32(value as i32)), LitKind::Int(value, LitIntType::Signed(IntTy::I64)) => Constant::Int(ConstInt::I64(value as i64)), LitKind::Int(value, LitIntType::Signed(IntTy::Is)) => { Constant::Int(ConstInt::Isize(ConstIsize::Is32(value as i32))) } LitKind::Float(ref is, ty) => Constant::Float(is.to_string(), ty.into()), LitKind::FloatUnsuffixed(ref is) => Constant::Float(is.to_string(), FloatWidth::Any), LitKind::Bool(b) => Constant::Bool(b), } } fn constant_not(o: Constant) -> Option { use self::Constant::*; match o { Bool(b) => Some(Bool(!b)), Int(value) => (!value).ok().map(Int), _ => None, } } fn constant_negate(o: Constant) -> Option { use self::Constant::*; match o { Int(value) => (-value).ok().map(Int), Float(is, ty) => Some(Float(neg_float_str(is), ty)), _ => None, } } fn neg_float_str(s: String) -> String { if s.starts_with('-') { s[1..].to_owned() } else { format!("-{}", s) } } pub fn constant(lcx: &LateContext, e: &Expr) -> Option<(Constant, bool)> { let mut cx = ConstEvalLateContext { lcx: Some(lcx), needed_resolution: false, }; cx.expr(e).map(|cst| (cst, cx.needed_resolution)) } pub fn constant_simple(e: &Expr) -> Option { let mut cx = ConstEvalLateContext { lcx: None, needed_resolution: false, }; cx.expr(e) } struct ConstEvalLateContext<'c, 'cc: 'c> { lcx: Option<&'c LateContext<'c, 'cc>>, needed_resolution: bool, } impl<'c, 'cc> ConstEvalLateContext<'c, 'cc> { /// simple constant folding: Insert an expression, get a constant or none. fn expr(&mut self, e: &Expr) -> Option { match e.node { ExprPath(_, _) => self.fetch_path(e), ExprBlock(ref block) => self.block(block), ExprIf(ref cond, ref then, ref otherwise) => self.ifthenelse(cond, then, otherwise), ExprLit(ref lit) => Some(lit_to_constant(&lit.node)), ExprVec(ref vec) => self.multi(vec).map(Constant::Vec), ExprTup(ref tup) => self.multi(tup).map(Constant::Tuple), ExprRepeat(ref value, ref number) => { self.binop_apply(value, number, |v, n| Some(Constant::Repeat(Box::new(v), n.as_u64() as usize))) } ExprUnary(op, ref operand) => { self.expr(operand).and_then(|o| { match op { UnNot => constant_not(o), UnNeg => constant_negate(o), UnDeref => Some(o), } }) } ExprBinary(op, ref left, ref right) => self.binop(op, left, right), // TODO: add other expressions _ => None, } } /// create `Some(Vec![..])` of all constants, unless there is any /// non-constant part fn multi + Sized>(&mut self, vec: &[E]) -> Option> { vec.iter() .map(|elem| self.expr(elem)) .collect::>() } /// lookup a possibly constant expression from a ExprPath fn fetch_path(&mut self, e: &Expr) -> Option { if let Some(lcx) = self.lcx { let mut maybe_id = None; if let Some(&PathResolution { base_def: Def::Const(id), .. }) = lcx.tcx.def_map.borrow().get(&e.id) { maybe_id = Some(id); } // separate if lets to avoid double borrowing the def_map if let Some(id) = maybe_id { if let Some((const_expr, _ty)) = lookup_const_by_id(lcx.tcx, id, None) { let ret = self.expr(const_expr); if ret.is_some() { self.needed_resolution = true; } return ret; } } } None } /// A block can only yield a constant if it only has one constant expression fn block(&mut self, block: &Block) -> Option { if block.stmts.is_empty() { block.expr.as_ref().and_then(|ref b| self.expr(b)) } else { None } } fn ifthenelse(&mut self, cond: &Expr, then: &Block, otherwise: &Option>) -> Option { if let Some(Constant::Bool(b)) = self.expr(cond) { if b { self.block(then) } else { otherwise.as_ref().and_then(|expr| self.expr(expr)) } } else { None } } fn binop(&mut self, op: BinOp, left: &Expr, right: &Expr) -> Option { let l = if let Some(l) = self.expr(left) { l } else { return None; }; let r = self.expr(right); match (op.node, l, r) { (BiAdd, Constant::Int(l), Some(Constant::Int(r))) => (l + r).ok().map(Constant::Int), (BiSub, Constant::Int(l), Some(Constant::Int(r))) => (l - r).ok().map(Constant::Int), (BiMul, Constant::Int(l), Some(Constant::Int(r))) => (l * r).ok().map(Constant::Int), (BiDiv, Constant::Int(l), Some(Constant::Int(r))) => (l / r).ok().map(Constant::Int), (BiRem, Constant::Int(l), Some(Constant::Int(r))) => (l % r).ok().map(Constant::Int), (BiAnd, Constant::Bool(false), _) => Some(Constant::Bool(false)), (BiOr, Constant::Bool(true), _) => Some(Constant::Bool(true)), (BiAnd, Constant::Bool(true), Some(r)) | (BiOr, Constant::Bool(false), Some(r)) => Some(r), (BiBitXor, Constant::Bool(l), Some(Constant::Bool(r))) => Some(Constant::Bool(l ^ r)), (BiBitXor, Constant::Int(l), Some(Constant::Int(r))) => (l ^ r).ok().map(Constant::Int), (BiBitAnd, Constant::Bool(l), Some(Constant::Bool(r))) => Some(Constant::Bool(l & r)), (BiBitAnd, Constant::Int(l), Some(Constant::Int(r))) => (l & r).ok().map(Constant::Int), (BiBitOr, Constant::Bool(l), Some(Constant::Bool(r))) => Some(Constant::Bool(l | r)), (BiBitOr, Constant::Int(l), Some(Constant::Int(r))) => (l | r).ok().map(Constant::Int), (BiShl, Constant::Int(l), Some(Constant::Int(r))) => (l << r).ok().map(Constant::Int), (BiShr, Constant::Int(l), Some(Constant::Int(r))) => (l >> r).ok().map(Constant::Int), (BiEq, Constant::Int(l), Some(Constant::Int(r))) => Some(Constant::Bool(l == r)), (BiNe, Constant::Int(l), Some(Constant::Int(r))) => Some(Constant::Bool(l != r)), (BiLt, Constant::Int(l), Some(Constant::Int(r))) => Some(Constant::Bool(l < r)), (BiLe, Constant::Int(l), Some(Constant::Int(r))) => Some(Constant::Bool(l <= r)), (BiGe, Constant::Int(l), Some(Constant::Int(r))) => Some(Constant::Bool(l >= r)), (BiGt, Constant::Int(l), Some(Constant::Int(r))) => Some(Constant::Bool(l > r)), _ => None, } } fn binop_apply(&mut self, left: &Expr, right: &Expr, op: F) -> Option where F: Fn(Constant, Constant) -> Option { if let (Some(lc), Some(rc)) = (self.expr(left), self.expr(right)) { op(lc, rc) } else { None } } }