use crate::utils::paths; use crate::utils::{get_trait_def_id, in_macro, span_lint, trait_ref_of_method}; use rustc_data_structures::fx::{FxHashMap, FxHashSet}; use rustc_hir::intravisit::{ walk_fn_decl, walk_generic_param, walk_generics, walk_item, walk_param_bound, walk_poly_trait_ref, walk_ty, NestedVisitorMap, Visitor, }; use rustc_hir::FnRetTy::Return; use rustc_hir::{ BareFnTy, BodyId, FnDecl, GenericArg, GenericBound, GenericParam, GenericParamKind, Generics, ImplItem, ImplItemKind, Item, ItemKind, Lifetime, LifetimeName, ParamName, PolyTraitRef, TraitBoundModifier, TraitFn, TraitItem, TraitItemKind, Ty, TyKind, WhereClause, WherePredicate, }; use rustc_lint::{LateContext, LateLintPass}; use rustc_middle::hir::map::Map; use rustc_session::{declare_lint_pass, declare_tool_lint}; use rustc_span::source_map::Span; use rustc_span::symbol::{kw, Symbol}; use std::iter::FromIterator; declare_clippy_lint! { /// **What it does:** Checks for lifetime annotations which can be removed by /// relying on lifetime elision. /// /// **Why is this bad?** The additional lifetimes make the code look more /// complicated, while there is nothing out of the ordinary going on. Removing /// them leads to more readable code. /// /// **Known problems:** /// - We bail out if the function has a `where` clause where lifetimes /// are mentioned due to potenial false positives. /// - Lifetime bounds such as `impl Foo + 'a` and `T: 'a` must be elided with the /// placeholder notation `'_` because the fully elided notation leaves the type bound to `'static`. /// /// **Example:** /// ```rust /// // Bad: unnecessary lifetime annotations /// fn in_and_out<'a>(x: &'a u8, y: u8) -> &'a u8 { /// x /// } /// /// // Good /// fn elided(x: &u8, y: u8) -> &u8 { /// x /// } /// ``` pub NEEDLESS_LIFETIMES, complexity, "using explicit lifetimes for references in function arguments when elision rules \ would allow omitting them" } declare_clippy_lint! { /// **What it does:** Checks for lifetimes in generics that are never used /// anywhere else. /// /// **Why is this bad?** The additional lifetimes make the code look more /// complicated, while there is nothing out of the ordinary going on. Removing /// them leads to more readable code. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// // Bad: unnecessary lifetimes /// fn unused_lifetime<'a>(x: u8) { /// // .. /// } /// /// // Good /// fn no_lifetime(x: u8) { /// // ... /// } /// ``` pub EXTRA_UNUSED_LIFETIMES, complexity, "unused lifetimes in function definitions" } declare_lint_pass!(Lifetimes => [NEEDLESS_LIFETIMES, EXTRA_UNUSED_LIFETIMES]); impl<'tcx> LateLintPass<'tcx> for Lifetimes { fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx Item<'_>) { if let ItemKind::Fn(ref sig, ref generics, id) = item.kind { check_fn_inner(cx, &sig.decl, Some(id), generics, item.span, true); } } fn check_impl_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx ImplItem<'_>) { if let ImplItemKind::Fn(ref sig, id) = item.kind { let report_extra_lifetimes = trait_ref_of_method(cx, item.hir_id).is_none(); check_fn_inner( cx, &sig.decl, Some(id), &item.generics, item.span, report_extra_lifetimes, ); } } fn check_trait_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx TraitItem<'_>) { if let TraitItemKind::Fn(ref sig, ref body) = item.kind { let body = match *body { TraitFn::Required(_) => None, TraitFn::Provided(id) => Some(id), }; check_fn_inner(cx, &sig.decl, body, &item.generics, item.span, true); } } } /// The lifetime of a &-reference. #[derive(PartialEq, Eq, Hash, Debug, Clone)] enum RefLt { Unnamed, Static, Named(Symbol), } fn check_fn_inner<'tcx>( cx: &LateContext<'tcx>, decl: &'tcx FnDecl<'_>, body: Option, generics: &'tcx Generics<'_>, span: Span, report_extra_lifetimes: bool, ) { if in_macro(span) || has_where_lifetimes(cx, &generics.where_clause) { return; } let types = generics .params .iter() .filter(|param| matches!(param.kind, GenericParamKind::Type { .. })); for typ in types { for bound in typ.bounds { let mut visitor = RefVisitor::new(cx); walk_param_bound(&mut visitor, bound); if visitor.lts.iter().any(|lt| matches!(lt, RefLt::Named(_))) { return; } if let GenericBound::Trait(ref trait_ref, _) = *bound { let params = &trait_ref .trait_ref .path .segments .last() .expect("a path must have at least one segment") .args; if let Some(ref params) = *params { let lifetimes = params.args.iter().filter_map(|arg| match arg { GenericArg::Lifetime(lt) => Some(lt), _ => None, }); for bound in lifetimes { if bound.name != LifetimeName::Static && !bound.is_elided() { return; } } } } } } if could_use_elision(cx, decl, body, &generics.params) { span_lint( cx, NEEDLESS_LIFETIMES, span.with_hi(decl.output.span().hi()), "explicit lifetimes given in parameter types where they could be elided \ (or replaced with `'_` if needed by type declaration)", ); } if report_extra_lifetimes { self::report_extra_lifetimes(cx, decl, generics); } } fn could_use_elision<'tcx>( cx: &LateContext<'tcx>, func: &'tcx FnDecl<'_>, body: Option, named_generics: &'tcx [GenericParam<'_>], ) -> bool { // There are two scenarios where elision works: // * no output references, all input references have different LT // * output references, exactly one input reference with same LT // All lifetimes must be unnamed, 'static or defined without bounds on the // level of the current item. // check named LTs let allowed_lts = allowed_lts_from(named_generics); // these will collect all the lifetimes for references in arg/return types let mut input_visitor = RefVisitor::new(cx); let mut output_visitor = RefVisitor::new(cx); // extract lifetimes in input argument types for arg in func.inputs { input_visitor.visit_ty(arg); } // extract lifetimes in output type if let Return(ref ty) = func.output { output_visitor.visit_ty(ty); } for lt in named_generics { input_visitor.visit_generic_param(lt) } if input_visitor.abort() || output_visitor.abort() { return false; } if allowed_lts .intersection(&FxHashSet::from_iter( input_visitor .nested_elision_site_lts .iter() .chain(output_visitor.nested_elision_site_lts.iter()) .cloned() .filter(|v| matches!(v, RefLt::Named(_))), )) .next() .is_some() { return false; } let input_lts = input_visitor.lts; let output_lts = output_visitor.lts; if let Some(body_id) = body { let mut checker = BodyLifetimeChecker { lifetimes_used_in_body: false, }; checker.visit_expr(&cx.tcx.hir().body(body_id).value); if checker.lifetimes_used_in_body { return false; } } // check for lifetimes from higher scopes for lt in input_lts.iter().chain(output_lts.iter()) { if !allowed_lts.contains(lt) { return false; } } // no input lifetimes? easy case! if input_lts.is_empty() { false } else if output_lts.is_empty() { // no output lifetimes, check distinctness of input lifetimes // only unnamed and static, ok let unnamed_and_static = input_lts.iter().all(|lt| *lt == RefLt::Unnamed || *lt == RefLt::Static); if unnamed_and_static { return false; } // we have no output reference, so we only need all distinct lifetimes input_lts.len() == unique_lifetimes(&input_lts) } else { // we have output references, so we need one input reference, // and all output lifetimes must be the same if unique_lifetimes(&output_lts) > 1 { return false; } if input_lts.len() == 1 { match (&input_lts[0], &output_lts[0]) { (&RefLt::Named(n1), &RefLt::Named(n2)) if n1 == n2 => true, (&RefLt::Named(_), &RefLt::Unnamed) => true, _ => false, /* already elided, different named lifetimes * or something static going on */ } } else { false } } } fn allowed_lts_from(named_generics: &[GenericParam<'_>]) -> FxHashSet { let mut allowed_lts = FxHashSet::default(); for par in named_generics.iter() { if let GenericParamKind::Lifetime { .. } = par.kind { if par.bounds.is_empty() { allowed_lts.insert(RefLt::Named(par.name.ident().name)); } } } allowed_lts.insert(RefLt::Unnamed); allowed_lts.insert(RefLt::Static); allowed_lts } /// Number of unique lifetimes in the given vector. #[must_use] fn unique_lifetimes(lts: &[RefLt]) -> usize { lts.iter().collect::>().len() } const CLOSURE_TRAIT_BOUNDS: [&[&str]; 3] = [&paths::FN, &paths::FN_MUT, &paths::FN_ONCE]; /// A visitor usable for `rustc_front::visit::walk_ty()`. struct RefVisitor<'a, 'tcx> { cx: &'a LateContext<'tcx>, lts: Vec, nested_elision_site_lts: Vec, unelided_trait_object_lifetime: bool, } impl<'a, 'tcx> RefVisitor<'a, 'tcx> { fn new(cx: &'a LateContext<'tcx>) -> Self { Self { cx, lts: Vec::new(), nested_elision_site_lts: Vec::new(), unelided_trait_object_lifetime: false, } } fn record(&mut self, lifetime: &Option) { if let Some(ref lt) = *lifetime { if lt.name == LifetimeName::Static { self.lts.push(RefLt::Static); } else if let LifetimeName::Param(ParamName::Fresh(_)) = lt.name { // Fresh lifetimes generated should be ignored. } else if lt.is_elided() { self.lts.push(RefLt::Unnamed); } else { self.lts.push(RefLt::Named(lt.name.ident().name)); } } else { self.lts.push(RefLt::Unnamed); } } fn all_lts(&self) -> Vec { self.lts .iter() .chain(self.nested_elision_site_lts.iter()) .cloned() .collect::>() } fn abort(&self) -> bool { self.unelided_trait_object_lifetime } } impl<'a, 'tcx> Visitor<'tcx> for RefVisitor<'a, 'tcx> { type Map = Map<'tcx>; // for lifetimes as parameters of generics fn visit_lifetime(&mut self, lifetime: &'tcx Lifetime) { self.record(&Some(*lifetime)); } fn visit_poly_trait_ref(&mut self, poly_tref: &'tcx PolyTraitRef<'tcx>, tbm: TraitBoundModifier) { let trait_ref = &poly_tref.trait_ref; if CLOSURE_TRAIT_BOUNDS .iter() .any(|trait_path| trait_ref.trait_def_id() == get_trait_def_id(self.cx, trait_path)) { let mut sub_visitor = RefVisitor::new(self.cx); sub_visitor.visit_trait_ref(trait_ref); self.nested_elision_site_lts.append(&mut sub_visitor.all_lts()); } else { walk_poly_trait_ref(self, poly_tref, tbm); } } fn visit_ty(&mut self, ty: &'tcx Ty<'_>) { match ty.kind { TyKind::OpaqueDef(item, _) => { let map = self.cx.tcx.hir(); let item = map.expect_item(item.id); walk_item(self, item); walk_ty(self, ty); }, TyKind::BareFn(&BareFnTy { decl, .. }) => { let mut sub_visitor = RefVisitor::new(self.cx); sub_visitor.visit_fn_decl(decl); self.nested_elision_site_lts.append(&mut sub_visitor.all_lts()); }, TyKind::TraitObject(bounds, ref lt) => { if !lt.is_elided() { self.unelided_trait_object_lifetime = true; } for bound in bounds { self.visit_poly_trait_ref(bound, TraitBoundModifier::None); } return; }, _ => (), } walk_ty(self, ty); } fn nested_visit_map(&mut self) -> NestedVisitorMap { NestedVisitorMap::None } } /// Are any lifetimes mentioned in the `where` clause? If so, we don't try to /// reason about elision. fn has_where_lifetimes<'tcx>(cx: &LateContext<'tcx>, where_clause: &'tcx WhereClause<'_>) -> bool { for predicate in where_clause.predicates { match *predicate { WherePredicate::RegionPredicate(..) => return true, WherePredicate::BoundPredicate(ref pred) => { // a predicate like F: Trait or F: for<'a> Trait<'a> let mut visitor = RefVisitor::new(cx); // walk the type F, it may not contain LT refs walk_ty(&mut visitor, &pred.bounded_ty); if !visitor.lts.is_empty() { return true; } // if the bounds define new lifetimes, they are fine to occur let allowed_lts = allowed_lts_from(&pred.bound_generic_params); // now walk the bounds for bound in pred.bounds.iter() { walk_param_bound(&mut visitor, bound); } // and check that all lifetimes are allowed return visitor.all_lts().iter().any(|it| !allowed_lts.contains(it)); }, WherePredicate::EqPredicate(ref pred) => { let mut visitor = RefVisitor::new(cx); walk_ty(&mut visitor, &pred.lhs_ty); walk_ty(&mut visitor, &pred.rhs_ty); if !visitor.lts.is_empty() { return true; } }, } } false } struct LifetimeChecker { map: FxHashMap, } impl<'tcx> Visitor<'tcx> for LifetimeChecker { type Map = Map<'tcx>; // for lifetimes as parameters of generics fn visit_lifetime(&mut self, lifetime: &'tcx Lifetime) { self.map.remove(&lifetime.name.ident().name); } fn visit_generic_param(&mut self, param: &'tcx GenericParam<'_>) { // don't actually visit `<'a>` or `<'a: 'b>` // we've already visited the `'a` declarations and // don't want to spuriously remove them // `'b` in `'a: 'b` is useless unless used elsewhere in // a non-lifetime bound if let GenericParamKind::Type { .. } = param.kind { walk_generic_param(self, param) } } fn nested_visit_map(&mut self) -> NestedVisitorMap { NestedVisitorMap::None } } fn report_extra_lifetimes<'tcx>(cx: &LateContext<'tcx>, func: &'tcx FnDecl<'_>, generics: &'tcx Generics<'_>) { let hs = generics .params .iter() .filter_map(|par| match par.kind { GenericParamKind::Lifetime { .. } => Some((par.name.ident().name, par.span)), _ => None, }) .collect(); let mut checker = LifetimeChecker { map: hs }; walk_generics(&mut checker, generics); walk_fn_decl(&mut checker, func); for &v in checker.map.values() { span_lint( cx, EXTRA_UNUSED_LIFETIMES, v, "this lifetime isn't used in the function definition", ); } } struct BodyLifetimeChecker { lifetimes_used_in_body: bool, } impl<'tcx> Visitor<'tcx> for BodyLifetimeChecker { type Map = Map<'tcx>; // for lifetimes as parameters of generics fn visit_lifetime(&mut self, lifetime: &'tcx Lifetime) { if lifetime.name.ident().name != kw::Invalid && lifetime.name.ident().name != kw::StaticLifetime { self.lifetimes_used_in_body = true; } } fn nested_visit_map(&mut self) -> NestedVisitorMap { NestedVisitorMap::None } }