use consts::constant; use rustc::lint::*; use rustc::hir::*; use std::hash::{Hash, Hasher}; use std::collections::hash_map::DefaultHasher; use syntax::ast::Name; use syntax::ptr::P; use utils::differing_macro_contexts; /// Type used to check whether two ast are the same. This is different from the /// operator /// `==` on ast types as this operator would compare true equality with ID and /// span. /// /// Note that some expressions kinds are not considered but could be added. pub struct SpanlessEq<'a, 'tcx: 'a> { /// Context used to evaluate constant expressions. cx: &'a LateContext<'a, 'tcx>, /// If is true, never consider as equal expressions containing function /// calls. ignore_fn: bool, } impl<'a, 'tcx: 'a> SpanlessEq<'a, 'tcx> { pub fn new(cx: &'a LateContext<'a, 'tcx>) -> Self { Self { cx: cx, ignore_fn: false, } } pub fn ignore_fn(self) -> Self { Self { cx: self.cx, ignore_fn: true, } } /// Check whether two statements are the same. pub fn eq_stmt(&self, left: &Stmt, right: &Stmt) -> bool { match (&left.node, &right.node) { (&StmtDecl(ref l, _), &StmtDecl(ref r, _)) => { if let (&DeclLocal(ref l), &DeclLocal(ref r)) = (&l.node, &r.node) { both(&l.ty, &r.ty, |l, r| self.eq_ty(l, r)) && both(&l.init, &r.init, |l, r| self.eq_expr(l, r)) } else { false } }, (&StmtExpr(ref l, _), &StmtExpr(ref r, _)) | (&StmtSemi(ref l, _), &StmtSemi(ref r, _)) => self.eq_expr(l, r), _ => false, } } /// Check whether two blocks are the same. pub fn eq_block(&self, left: &Block, right: &Block) -> bool { over(&left.stmts, &right.stmts, |l, r| self.eq_stmt(l, r)) && both(&left.expr, &right.expr, |l, r| self.eq_expr(l, r)) } pub fn eq_expr(&self, left: &Expr, right: &Expr) -> bool { if self.ignore_fn && differing_macro_contexts(left.span, right.span) { return false; } if let (Some(l), Some(r)) = (constant(self.cx, left), constant(self.cx, right)) { if l == r { return true; } } match (&left.node, &right.node) { (&ExprAddrOf(l_mut, ref le), &ExprAddrOf(r_mut, ref re)) => l_mut == r_mut && self.eq_expr(le, re), (&ExprAgain(li), &ExprAgain(ri)) => { both(&li.ident, &ri.ident, |l, r| l.node.name.as_str() == r.node.name.as_str()) }, (&ExprAssign(ref ll, ref lr), &ExprAssign(ref rl, ref rr)) => self.eq_expr(ll, rl) && self.eq_expr(lr, rr), (&ExprAssignOp(ref lo, ref ll, ref lr), &ExprAssignOp(ref ro, ref rl, ref rr)) => { lo.node == ro.node && self.eq_expr(ll, rl) && self.eq_expr(lr, rr) }, (&ExprBlock(ref l), &ExprBlock(ref r)) => self.eq_block(l, r), (&ExprBinary(l_op, ref ll, ref lr), &ExprBinary(r_op, ref rl, ref rr)) => { l_op.node == r_op.node && self.eq_expr(ll, rl) && self.eq_expr(lr, rr) || swap_binop(l_op.node, ll, lr).map_or(false, |(l_op, ll, lr)| { l_op == r_op.node && self.eq_expr(ll, rl) && self.eq_expr(lr, rr) }) }, (&ExprBreak(li, ref le), &ExprBreak(ri, ref re)) => { both(&li.ident, &ri.ident, |l, r| l.node.name.as_str() == r.node.name.as_str()) && both(le, re, |l, r| self.eq_expr(l, r)) }, (&ExprBox(ref l), &ExprBox(ref r)) => self.eq_expr(l, r), (&ExprCall(ref l_fun, ref l_args), &ExprCall(ref r_fun, ref r_args)) => { !self.ignore_fn && self.eq_expr(l_fun, r_fun) && self.eq_exprs(l_args, r_args) }, (&ExprCast(ref lx, ref lt), &ExprCast(ref rx, ref rt)) | (&ExprType(ref lx, ref lt), &ExprType(ref rx, ref rt)) => self.eq_expr(lx, rx) && self.eq_ty(lt, rt), (&ExprField(ref l_f_exp, ref l_f_ident), &ExprField(ref r_f_exp, ref r_f_ident)) => { l_f_ident.node == r_f_ident.node && self.eq_expr(l_f_exp, r_f_exp) }, (&ExprIndex(ref la, ref li), &ExprIndex(ref ra, ref ri)) => self.eq_expr(la, ra) && self.eq_expr(li, ri), (&ExprIf(ref lc, ref lt, ref le), &ExprIf(ref rc, ref rt, ref re)) => { self.eq_expr(lc, rc) && self.eq_expr(&**lt, &**rt) && both(le, re, |l, r| self.eq_expr(l, r)) }, (&ExprLit(ref l), &ExprLit(ref r)) => l.node == r.node, (&ExprLoop(ref lb, ref ll, ref lls), &ExprLoop(ref rb, ref rl, ref rls)) => { lls == rls && self.eq_block(lb, rb) && both(ll, rl, |l, r| l.node.as_str() == r.node.as_str()) }, (&ExprMatch(ref le, ref la, ref ls), &ExprMatch(ref re, ref ra, ref rs)) => { ls == rs && self.eq_expr(le, re) && over(la, ra, |l, r| { self.eq_expr(&l.body, &r.body) && both(&l.guard, &r.guard, |l, r| self.eq_expr(l, r)) && over(&l.pats, &r.pats, |l, r| self.eq_pat(l, r)) }) }, (&ExprMethodCall(ref l_path, _, ref l_args), &ExprMethodCall(ref r_path, _, ref r_args)) => { !self.ignore_fn && l_path == r_path && self.eq_exprs(l_args, r_args) }, (&ExprRepeat(ref le, ll_id), &ExprRepeat(ref re, rl_id)) => { self.eq_expr(le, re) && self.eq_expr(&self.cx.tcx.hir.body(ll_id).value, &self.cx.tcx.hir.body(rl_id).value) }, (&ExprRet(ref l), &ExprRet(ref r)) => both(l, r, |l, r| self.eq_expr(l, r)), (&ExprPath(ref l), &ExprPath(ref r)) => self.eq_qpath(l, r), (&ExprStruct(ref l_path, ref lf, ref lo), &ExprStruct(ref r_path, ref rf, ref ro)) => { self.eq_qpath(l_path, r_path) && both(lo, ro, |l, r| self.eq_expr(l, r)) && over(lf, rf, |l, r| self.eq_field(l, r)) }, (&ExprTup(ref l_tup), &ExprTup(ref r_tup)) => self.eq_exprs(l_tup, r_tup), (&ExprTupField(ref le, li), &ExprTupField(ref re, ri)) => li.node == ri.node && self.eq_expr(le, re), (&ExprUnary(l_op, ref le), &ExprUnary(r_op, ref re)) => l_op == r_op && self.eq_expr(le, re), (&ExprArray(ref l), &ExprArray(ref r)) => self.eq_exprs(l, r), (&ExprWhile(ref lc, ref lb, ref ll), &ExprWhile(ref rc, ref rb, ref rl)) => { self.eq_expr(lc, rc) && self.eq_block(lb, rb) && both(ll, rl, |l, r| l.node.as_str() == r.node.as_str()) }, _ => false, } } fn eq_exprs(&self, left: &P<[Expr]>, right: &P<[Expr]>) -> bool { over(left, right, |l, r| self.eq_expr(l, r)) } fn eq_field(&self, left: &Field, right: &Field) -> bool { left.name.node == right.name.node && self.eq_expr(&left.expr, &right.expr) } fn eq_lifetime(&self, left: &Lifetime, right: &Lifetime) -> bool { left.name == right.name } /// Check whether two patterns are the same. pub fn eq_pat(&self, left: &Pat, right: &Pat) -> bool { match (&left.node, &right.node) { (&PatKind::Box(ref l), &PatKind::Box(ref r)) => self.eq_pat(l, r), (&PatKind::TupleStruct(ref lp, ref la, ls), &PatKind::TupleStruct(ref rp, ref ra, rs)) => { self.eq_qpath(lp, rp) && over(la, ra, |l, r| self.eq_pat(l, r)) && ls == rs }, (&PatKind::Binding(ref lb, _, ref li, ref lp), &PatKind::Binding(ref rb, _, ref ri, ref rp)) => { lb == rb && li.node.as_str() == ri.node.as_str() && both(lp, rp, |l, r| self.eq_pat(l, r)) }, (&PatKind::Path(ref l), &PatKind::Path(ref r)) => self.eq_qpath(l, r), (&PatKind::Lit(ref l), &PatKind::Lit(ref r)) => self.eq_expr(l, r), (&PatKind::Tuple(ref l, ls), &PatKind::Tuple(ref r, rs)) => { ls == rs && over(l, r, |l, r| self.eq_pat(l, r)) }, (&PatKind::Range(ref ls, ref le, ref li), &PatKind::Range(ref rs, ref re, ref ri)) => { self.eq_expr(ls, rs) && self.eq_expr(le, re) && (*li == *ri) }, (&PatKind::Ref(ref le, ref lm), &PatKind::Ref(ref re, ref rm)) => lm == rm && self.eq_pat(le, re), (&PatKind::Slice(ref ls, ref li, ref le), &PatKind::Slice(ref rs, ref ri, ref re)) => { over(ls, rs, |l, r| self.eq_pat(l, r)) && over(le, re, |l, r| self.eq_pat(l, r)) && both(li, ri, |l, r| self.eq_pat(l, r)) }, (&PatKind::Wild, &PatKind::Wild) => true, _ => false, } } fn eq_qpath(&self, left: &QPath, right: &QPath) -> bool { match (left, right) { (&QPath::Resolved(ref lty, ref lpath), &QPath::Resolved(ref rty, ref rpath)) => { both(lty, rty, |l, r| self.eq_ty(l, r)) && self.eq_path(lpath, rpath) }, (&QPath::TypeRelative(ref lty, ref lseg), &QPath::TypeRelative(ref rty, ref rseg)) => { self.eq_ty(lty, rty) && self.eq_path_segment(lseg, rseg) }, _ => false, } } fn eq_path(&self, left: &Path, right: &Path) -> bool { left.is_global() == right.is_global() && over(&left.segments, &right.segments, |l, r| self.eq_path_segment(l, r)) } fn eq_path_parameters(&self, left: &PathParameters, right: &PathParameters) -> bool { if !(left.parenthesized || right.parenthesized) { over(&left.lifetimes, &right.lifetimes, |l, r| self.eq_lifetime(l, r)) && over(&left.types, &right.types, |l, r| self.eq_ty(l, r)) && over(&left.bindings, &right.bindings, |l, r| self.eq_type_binding(l, r)) } else if left.parenthesized && right.parenthesized { over(left.inputs(), right.inputs(), |l, r| self.eq_ty(l, r)) && both(&Some(&left.bindings[0].ty), &Some(&right.bindings[0].ty), |l, r| self.eq_ty(l, r)) } else { false } } fn eq_path_segment(&self, left: &PathSegment, right: &PathSegment) -> bool { // The == of idents doesn't work with different contexts, // we have to be explicit about hygiene left.name.as_str() == right.name.as_str() && self.eq_path_parameters(&left.parameters, &right.parameters) } fn eq_ty(&self, left: &Ty, right: &Ty) -> bool { match (&left.node, &right.node) { (&TySlice(ref l_vec), &TySlice(ref r_vec)) => self.eq_ty(l_vec, r_vec), (&TyArray(ref lt, ll_id), &TyArray(ref rt, rl_id)) => { self.eq_ty(lt, rt) && self.eq_expr(&self.cx.tcx.hir.body(ll_id).value, &self.cx.tcx.hir.body(rl_id).value) }, (&TyPtr(ref l_mut), &TyPtr(ref r_mut)) => l_mut.mutbl == r_mut.mutbl && self.eq_ty(&*l_mut.ty, &*r_mut.ty), (&TyRptr(_, ref l_rmut), &TyRptr(_, ref r_rmut)) => { l_rmut.mutbl == r_rmut.mutbl && self.eq_ty(&*l_rmut.ty, &*r_rmut.ty) }, (&TyPath(ref l), &TyPath(ref r)) => self.eq_qpath(l, r), (&TyTup(ref l), &TyTup(ref r)) => over(l, r, |l, r| self.eq_ty(l, r)), (&TyInfer, &TyInfer) => true, _ => false, } } fn eq_type_binding(&self, left: &TypeBinding, right: &TypeBinding) -> bool { left.name == right.name && self.eq_ty(&left.ty, &right.ty) } } fn swap_binop<'a>(binop: BinOp_, lhs: &'a Expr, rhs: &'a Expr) -> Option<(BinOp_, &'a Expr, &'a Expr)> { match binop { BiAdd | BiMul | BiBitXor | BiBitAnd | BiEq | BiNe | BiBitOr => Some((binop, rhs, lhs)), BiLt => Some((BiGt, rhs, lhs)), BiLe => Some((BiGe, rhs, lhs)), BiGe => Some((BiLe, rhs, lhs)), BiGt => Some((BiLt, rhs, lhs)), BiShl | BiShr | BiRem | BiSub | BiDiv | BiAnd | BiOr => None, } } /// Check if the two `Option`s are both `None` or some equal values as per /// `eq_fn`. fn both(l: &Option, r: &Option, mut eq_fn: F) -> bool where F: FnMut(&X, &X) -> bool, { l.as_ref().map_or_else(|| r.is_none(), |x| { r.as_ref().map_or(false, |y| eq_fn(x, y)) }) } /// Check if two slices are equal as per `eq_fn`. fn over(left: &[X], right: &[X], mut eq_fn: F) -> bool where F: FnMut(&X, &X) -> bool, { left.len() == right.len() && left.iter().zip(right).all(|(x, y)| eq_fn(x, y)) } /// Type used to hash an ast element. This is different from the `Hash` trait /// on ast types as this /// trait would consider IDs and spans. /// /// All expressions kind are hashed, but some might have a weaker hash. pub struct SpanlessHash<'a, 'tcx: 'a> { /// Context used to evaluate constant expressions. cx: &'a LateContext<'a, 'tcx>, s: DefaultHasher, } impl<'a, 'tcx: 'a> SpanlessHash<'a, 'tcx> { pub fn new(cx: &'a LateContext<'a, 'tcx>) -> Self { Self { cx: cx, s: DefaultHasher::new(), } } pub fn finish(&self) -> u64 { self.s.finish() } pub fn hash_block(&mut self, b: &Block) { for s in &b.stmts { self.hash_stmt(s); } if let Some(ref e) = b.expr { self.hash_expr(e); } b.rules.hash(&mut self.s); } pub fn hash_expr(&mut self, e: &Expr) { if let Some(e) = constant(self.cx, e) { return e.hash(&mut self.s); } match e.node { ExprAddrOf(m, ref e) => { let c: fn(_, _) -> _ = ExprAddrOf; c.hash(&mut self.s); m.hash(&mut self.s); self.hash_expr(e); }, ExprAgain(i) => { let c: fn(_) -> _ = ExprAgain; c.hash(&mut self.s); if let Some(i) = i.ident { self.hash_name(&i.node.name); } }, ExprYield(ref e) => { let c: fn(_) -> _ = ExprYield; c.hash(&mut self.s); self.hash_expr(e); }, ExprAssign(ref l, ref r) => { let c: fn(_, _) -> _ = ExprAssign; c.hash(&mut self.s); self.hash_expr(l); self.hash_expr(r); }, ExprAssignOp(ref o, ref l, ref r) => { let c: fn(_, _, _) -> _ = ExprAssignOp; c.hash(&mut self.s); o.hash(&mut self.s); self.hash_expr(l); self.hash_expr(r); }, ExprBlock(ref b) => { let c: fn(_) -> _ = ExprBlock; c.hash(&mut self.s); self.hash_block(b); }, ExprBinary(op, ref l, ref r) => { let c: fn(_, _, _) -> _ = ExprBinary; c.hash(&mut self.s); op.node.hash(&mut self.s); self.hash_expr(l); self.hash_expr(r); }, ExprBreak(i, ref j) => { let c: fn(_, _) -> _ = ExprBreak; c.hash(&mut self.s); if let Some(i) = i.ident { self.hash_name(&i.node.name); } if let Some(ref j) = *j { self.hash_expr(&*j); } }, ExprBox(ref e) => { let c: fn(_) -> _ = ExprBox; c.hash(&mut self.s); self.hash_expr(e); }, ExprCall(ref fun, ref args) => { let c: fn(_, _) -> _ = ExprCall; c.hash(&mut self.s); self.hash_expr(fun); self.hash_exprs(args); }, ExprCast(ref e, ref _ty) => { let c: fn(_, _) -> _ = ExprCast; c.hash(&mut self.s); self.hash_expr(e); // TODO: _ty }, ExprClosure(cap, _, eid, _, _) => { let c: fn(_, _, _, _, _) -> _ = ExprClosure; c.hash(&mut self.s); cap.hash(&mut self.s); self.hash_expr(&self.cx.tcx.hir.body(eid).value); }, ExprField(ref e, ref f) => { let c: fn(_, _) -> _ = ExprField; c.hash(&mut self.s); self.hash_expr(e); self.hash_name(&f.node); }, ExprIndex(ref a, ref i) => { let c: fn(_, _) -> _ = ExprIndex; c.hash(&mut self.s); self.hash_expr(a); self.hash_expr(i); }, ExprInlineAsm(..) => { let c: fn(_, _, _) -> _ = ExprInlineAsm; c.hash(&mut self.s); }, ExprIf(ref cond, ref t, ref e) => { let c: fn(_, _, _) -> _ = ExprIf; c.hash(&mut self.s); self.hash_expr(cond); self.hash_expr(&**t); if let Some(ref e) = *e { self.hash_expr(e); } }, ExprLit(ref l) => { let c: fn(_) -> _ = ExprLit; c.hash(&mut self.s); l.hash(&mut self.s); }, ExprLoop(ref b, ref i, _) => { let c: fn(_, _, _) -> _ = ExprLoop; c.hash(&mut self.s); self.hash_block(b); if let Some(i) = *i { self.hash_name(&i.node); } }, ExprMatch(ref e, ref arms, ref s) => { let c: fn(_, _, _) -> _ = ExprMatch; c.hash(&mut self.s); self.hash_expr(e); for arm in arms { // TODO: arm.pat? if let Some(ref e) = arm.guard { self.hash_expr(e); } self.hash_expr(&arm.body); } s.hash(&mut self.s); }, ExprMethodCall(ref path, ref _tys, ref args) => { let c: fn(_, _, _) -> _ = ExprMethodCall; c.hash(&mut self.s); self.hash_name(&path.name); self.hash_exprs(args); }, ExprRepeat(ref e, l_id) => { let c: fn(_, _) -> _ = ExprRepeat; c.hash(&mut self.s); self.hash_expr(e); self.hash_expr(&self.cx.tcx.hir.body(l_id).value); }, ExprRet(ref e) => { let c: fn(_) -> _ = ExprRet; c.hash(&mut self.s); if let Some(ref e) = *e { self.hash_expr(e); } }, ExprPath(ref qpath) => { let c: fn(_) -> _ = ExprPath; c.hash(&mut self.s); self.hash_qpath(qpath); }, ExprStruct(ref path, ref fields, ref expr) => { let c: fn(_, _, _) -> _ = ExprStruct; c.hash(&mut self.s); self.hash_qpath(path); for f in fields { self.hash_name(&f.name.node); self.hash_expr(&f.expr); } if let Some(ref e) = *expr { self.hash_expr(e); } }, ExprTup(ref tup) => { let c: fn(_) -> _ = ExprTup; c.hash(&mut self.s); self.hash_exprs(tup); }, ExprTupField(ref le, li) => { let c: fn(_, _) -> _ = ExprTupField; c.hash(&mut self.s); self.hash_expr(le); li.node.hash(&mut self.s); }, ExprType(ref e, ref _ty) => { let c: fn(_, _) -> _ = ExprType; c.hash(&mut self.s); self.hash_expr(e); // TODO: _ty }, ExprUnary(lop, ref le) => { let c: fn(_, _) -> _ = ExprUnary; c.hash(&mut self.s); lop.hash(&mut self.s); self.hash_expr(le); }, ExprArray(ref v) => { let c: fn(_) -> _ = ExprArray; c.hash(&mut self.s); self.hash_exprs(v); }, ExprWhile(ref cond, ref b, l) => { let c: fn(_, _, _) -> _ = ExprWhile; c.hash(&mut self.s); self.hash_expr(cond); self.hash_block(b); if let Some(l) = l { self.hash_name(&l.node); } }, } } pub fn hash_exprs(&mut self, e: &P<[Expr]>) { for e in e { self.hash_expr(e); } } pub fn hash_name(&mut self, n: &Name) { n.as_str().hash(&mut self.s); } pub fn hash_qpath(&mut self, p: &QPath) { match *p { QPath::Resolved(_, ref path) => { self.hash_path(path); }, QPath::TypeRelative(_, ref path) => { self.hash_name(&path.name); }, } // self.cx.tables.qpath_def(p, id).hash(&mut self.s); } pub fn hash_path(&mut self, p: &Path) { p.is_global().hash(&mut self.s); for p in &p.segments { self.hash_name(&p.name); } } pub fn hash_stmt(&mut self, b: &Stmt) { match b.node { StmtDecl(ref decl, _) => { let c: fn(_, _) -> _ = StmtDecl; c.hash(&mut self.s); if let DeclLocal(ref local) = decl.node { if let Some(ref init) = local.init { self.hash_expr(init); } } }, StmtExpr(ref expr, _) => { let c: fn(_, _) -> _ = StmtExpr; c.hash(&mut self.s); self.hash_expr(expr); }, StmtSemi(ref expr, _) => { let c: fn(_, _) -> _ = StmtSemi; c.hash(&mut self.s); self.hash_expr(expr); }, } } }