#![allow(clippy::float_cmp)] use crate::utils::{clip, sext, unsext}; use if_chain::if_chain; use rustc_ast::ast::{self, LitFloatType, LitKind}; use rustc_data_structures::sync::Lrc; use rustc_hir::def::{DefKind, Res}; use rustc_hir::{BinOp, BinOpKind, Block, Expr, ExprKind, HirId, QPath, UnOp}; use rustc_lint::LateContext; use rustc_middle::mir::interpret::Scalar; use rustc_middle::ty::subst::{Subst, SubstsRef}; use rustc_middle::ty::{self, FloatTy, ScalarInt, Ty, TyCtxt}; use rustc_middle::{bug, span_bug}; use rustc_span::symbol::Symbol; use std::cmp::Ordering::{self, Equal}; use std::convert::TryInto; use std::hash::{Hash, Hasher}; /// A `LitKind`-like enum to fold constant `Expr`s into. #[derive(Debug, Clone)] pub enum Constant { /// A `String` (e.g., "abc"). Str(String), /// A binary string (e.g., `b"abc"`). Binary(Lrc<[u8]>), /// A single `char` (e.g., `'a'`). Char(char), /// An integer's bit representation. Int(u128), /// An `f32`. F32(f32), /// An `f64`. F64(f64), /// `true` or `false`. Bool(bool), /// An array of constants. Vec(Vec), /// Also an array, but with only one constant, repeated N times. Repeat(Box, u64), /// A tuple of constants. Tuple(Vec), /// A raw pointer. RawPtr(u128), /// A reference Ref(Box), /// A literal with syntax error. Err(Symbol), } impl PartialEq for Constant { fn eq(&self, other: &Self) -> bool { match (self, other) { (&Self::Str(ref ls), &Self::Str(ref rs)) => ls == rs, (&Self::Binary(ref l), &Self::Binary(ref r)) => l == r, (&Self::Char(l), &Self::Char(r)) => l == r, (&Self::Int(l), &Self::Int(r)) => l == r, (&Self::F64(l), &Self::F64(r)) => { // We want `Fw32 == FwAny` and `FwAny == Fw64`, and by transitivity we must have // `Fw32 == Fw64`, so don’t compare them. // `to_bits` is required to catch non-matching 0.0, -0.0, and NaNs. l.to_bits() == r.to_bits() }, (&Self::F32(l), &Self::F32(r)) => { // We want `Fw32 == FwAny` and `FwAny == Fw64`, and by transitivity we must have // `Fw32 == Fw64`, so don’t compare them. // `to_bits` is required to catch non-matching 0.0, -0.0, and NaNs. f64::from(l).to_bits() == f64::from(r).to_bits() }, (&Self::Bool(l), &Self::Bool(r)) => l == r, (&Self::Vec(ref l), &Self::Vec(ref r)) | (&Self::Tuple(ref l), &Self::Tuple(ref r)) => l == r, (&Self::Repeat(ref lv, ref ls), &Self::Repeat(ref rv, ref rs)) => ls == rs && lv == rv, (&Self::Ref(ref lb), &Self::Ref(ref rb)) => *lb == *rb, // TODO: are there inter-type equalities? _ => false, } } } impl Hash for Constant { fn hash(&self, state: &mut H) where H: Hasher, { std::mem::discriminant(self).hash(state); match *self { Self::Str(ref s) => { s.hash(state); }, Self::Binary(ref b) => { b.hash(state); }, Self::Char(c) => { c.hash(state); }, Self::Int(i) => { i.hash(state); }, Self::F32(f) => { f64::from(f).to_bits().hash(state); }, Self::F64(f) => { f.to_bits().hash(state); }, Self::Bool(b) => { b.hash(state); }, Self::Vec(ref v) | Self::Tuple(ref v) => { v.hash(state); }, Self::Repeat(ref c, l) => { c.hash(state); l.hash(state); }, Self::RawPtr(u) => { u.hash(state); }, Self::Ref(ref r) => { r.hash(state); }, Self::Err(ref s) => { s.hash(state); }, } } } impl Constant { pub fn partial_cmp(tcx: TyCtxt<'_>, cmp_type: Ty<'_>, left: &Self, right: &Self) -> Option { match (left, right) { (&Self::Str(ref ls), &Self::Str(ref rs)) => Some(ls.cmp(rs)), (&Self::Char(ref l), &Self::Char(ref r)) => Some(l.cmp(r)), (&Self::Int(l), &Self::Int(r)) => { if let ty::Int(int_ty) = *cmp_type.kind() { Some(sext(tcx, l, int_ty).cmp(&sext(tcx, r, int_ty))) } else { Some(l.cmp(&r)) } }, (&Self::F64(l), &Self::F64(r)) => l.partial_cmp(&r), (&Self::F32(l), &Self::F32(r)) => l.partial_cmp(&r), (&Self::Bool(ref l), &Self::Bool(ref r)) => Some(l.cmp(r)), (&Self::Tuple(ref l), &Self::Tuple(ref r)) | (&Self::Vec(ref l), &Self::Vec(ref r)) => l .iter() .zip(r.iter()) .map(|(li, ri)| Self::partial_cmp(tcx, cmp_type, li, ri)) .find(|r| r.map_or(true, |o| o != Ordering::Equal)) .unwrap_or_else(|| Some(l.len().cmp(&r.len()))), (&Self::Repeat(ref lv, ref ls), &Self::Repeat(ref rv, ref rs)) => { match Self::partial_cmp(tcx, cmp_type, lv, rv) { Some(Equal) => Some(ls.cmp(rs)), x => x, } }, (&Self::Ref(ref lb), &Self::Ref(ref rb)) => Self::partial_cmp(tcx, cmp_type, lb, rb), // TODO: are there any useful inter-type orderings? _ => None, } } } /// Parses a `LitKind` to a `Constant`. pub fn lit_to_constant(lit: &LitKind, ty: Option>) -> Constant { match *lit { LitKind::Str(ref is, _) => Constant::Str(is.to_string()), LitKind::Byte(b) => Constant::Int(u128::from(b)), LitKind::ByteStr(ref s) => Constant::Binary(Lrc::clone(s)), LitKind::Char(c) => Constant::Char(c), LitKind::Int(n, _) => Constant::Int(n), LitKind::Float(ref is, LitFloatType::Suffixed(fty)) => match fty { ast::FloatTy::F32 => Constant::F32(is.as_str().parse().unwrap()), ast::FloatTy::F64 => Constant::F64(is.as_str().parse().unwrap()), }, LitKind::Float(ref is, LitFloatType::Unsuffixed) => match ty.expect("type of float is known").kind() { ty::Float(FloatTy::F32) => Constant::F32(is.as_str().parse().unwrap()), ty::Float(FloatTy::F64) => Constant::F64(is.as_str().parse().unwrap()), _ => bug!(), }, LitKind::Bool(b) => Constant::Bool(b), LitKind::Err(s) => Constant::Err(s), } } pub fn constant<'tcx>( lcx: &LateContext<'tcx>, typeck_results: &ty::TypeckResults<'tcx>, e: &Expr<'_>, ) -> Option<(Constant, bool)> { let mut cx = ConstEvalLateContext { lcx, typeck_results, param_env: lcx.param_env, needed_resolution: false, substs: lcx.tcx.intern_substs(&[]), }; cx.expr(e).map(|cst| (cst, cx.needed_resolution)) } pub fn constant_simple<'tcx>( lcx: &LateContext<'tcx>, typeck_results: &ty::TypeckResults<'tcx>, e: &Expr<'_>, ) -> Option { constant(lcx, typeck_results, e).and_then(|(cst, res)| if res { None } else { Some(cst) }) } /// Creates a `ConstEvalLateContext` from the given `LateContext` and `TypeckResults`. pub fn constant_context<'a, 'tcx>( lcx: &'a LateContext<'tcx>, typeck_results: &'a ty::TypeckResults<'tcx>, ) -> ConstEvalLateContext<'a, 'tcx> { ConstEvalLateContext { lcx, typeck_results, param_env: lcx.param_env, needed_resolution: false, substs: lcx.tcx.intern_substs(&[]), } } pub struct ConstEvalLateContext<'a, 'tcx> { lcx: &'a LateContext<'tcx>, typeck_results: &'a ty::TypeckResults<'tcx>, param_env: ty::ParamEnv<'tcx>, needed_resolution: bool, substs: SubstsRef<'tcx>, } impl<'a, 'tcx> ConstEvalLateContext<'a, 'tcx> { /// Simple constant folding: Insert an expression, get a constant or none. pub fn expr(&mut self, e: &Expr<'_>) -> Option { match e.kind { ExprKind::Path(ref qpath) => self.fetch_path(qpath, e.hir_id, self.typeck_results.expr_ty(e)), ExprKind::Block(ref block, _) => self.block(block), ExprKind::Lit(ref lit) => Some(lit_to_constant(&lit.node, self.typeck_results.expr_ty_opt(e))), ExprKind::Array(ref vec) => self.multi(vec).map(Constant::Vec), ExprKind::Tup(ref tup) => self.multi(tup).map(Constant::Tuple), ExprKind::Repeat(ref value, _) => { let n = match self.typeck_results.expr_ty(e).kind() { ty::Array(_, n) => n.try_eval_usize(self.lcx.tcx, self.lcx.param_env)?, _ => span_bug!(e.span, "typeck error"), }; self.expr(value).map(|v| Constant::Repeat(Box::new(v), n)) }, ExprKind::Unary(op, ref operand) => self.expr(operand).and_then(|o| match op { UnOp::Not => self.constant_not(&o, self.typeck_results.expr_ty(e)), UnOp::Neg => self.constant_negate(&o, self.typeck_results.expr_ty(e)), UnOp::Deref => Some(if let Constant::Ref(r) = o { *r } else { o }), }), ExprKind::If(ref cond, ref then, ref otherwise) => self.ifthenelse(cond, then, *otherwise), ExprKind::Binary(op, ref left, ref right) => self.binop(op, left, right), ExprKind::Call(ref callee, ref args) => { // We only handle a few const functions for now. if_chain! { if args.is_empty(); if let ExprKind::Path(qpath) = &callee.kind; let res = self.typeck_results.qpath_res(qpath, callee.hir_id); if let Some(def_id) = res.opt_def_id(); let def_path: Vec<_> = self.lcx.get_def_path(def_id).into_iter().map(Symbol::as_str).collect(); let def_path: Vec<&str> = def_path.iter().take(4).map(|s| &**s).collect(); if let ["core", "num", int_impl, "max_value"] = *def_path; then { let value = match int_impl { "" => i8::MAX as u128, "" => i16::MAX as u128, "" => i32::MAX as u128, "" => i64::MAX as u128, "" => i128::MAX as u128, _ => return None, }; Some(Constant::Int(value)) } else { None } } }, ExprKind::Index(ref arr, ref index) => self.index(arr, index), ExprKind::AddrOf(_, _, ref inner) => self.expr(inner).map(|r| Constant::Ref(Box::new(r))), // TODO: add other expressions. _ => None, } } #[allow(clippy::cast_possible_wrap)] fn constant_not(&self, o: &Constant, ty: Ty<'_>) -> Option { use self::Constant::{Bool, Int}; match *o { Bool(b) => Some(Bool(!b)), Int(value) => { let value = !value; match *ty.kind() { ty::Int(ity) => Some(Int(unsext(self.lcx.tcx, value as i128, ity))), ty::Uint(ity) => Some(Int(clip(self.lcx.tcx, value, ity))), _ => None, } }, _ => None, } } fn constant_negate(&self, o: &Constant, ty: Ty<'_>) -> Option { use self::Constant::{Int, F32, F64}; match *o { Int(value) => { let ity = match *ty.kind() { ty::Int(ity) => ity, _ => return None, }; // sign extend let value = sext(self.lcx.tcx, value, ity); let value = value.checked_neg()?; // clear unused bits Some(Int(unsext(self.lcx.tcx, value, ity))) }, F32(f) => Some(F32(-f)), F64(f) => Some(F64(-f)), _ => None, } } /// Create `Some(Vec![..])` of all constants, unless there is any /// non-constant part. fn multi(&mut self, vec: &[Expr<'_>]) -> Option> { vec.iter().map(|elem| self.expr(elem)).collect::>() } /// Lookup a possibly constant expression from a `ExprKind::Path`. fn fetch_path(&mut self, qpath: &QPath<'_>, id: HirId, ty: Ty<'tcx>) -> Option { let res = self.typeck_results.qpath_res(qpath, id); match res { Res::Def(DefKind::Const | DefKind::AssocConst, def_id) => { let substs = self.typeck_results.node_substs(id); let substs = if self.substs.is_empty() { substs } else { substs.subst(self.lcx.tcx, self.substs) }; let result = self .lcx .tcx .const_eval_resolve( self.param_env, ty::WithOptConstParam::unknown(def_id), substs, None, None, ) .ok() .map(|val| rustc_middle::ty::Const::from_value(self.lcx.tcx, val, ty))?; let result = miri_to_const(&result); if result.is_some() { self.needed_resolution = true; } result }, // FIXME: cover all usable cases. _ => None, } } fn index(&mut self, lhs: &'_ Expr<'_>, index: &'_ Expr<'_>) -> Option { let lhs = self.expr(lhs); let index = self.expr(index); match (lhs, index) { (Some(Constant::Vec(vec)), Some(Constant::Int(index))) => match vec.get(index as usize) { Some(Constant::F32(x)) => Some(Constant::F32(*x)), Some(Constant::F64(x)) => Some(Constant::F64(*x)), _ => None, }, (Some(Constant::Vec(vec)), _) => { if !vec.is_empty() && vec.iter().all(|x| *x == vec[0]) { match vec.get(0) { Some(Constant::F32(x)) => Some(Constant::F32(*x)), Some(Constant::F64(x)) => Some(Constant::F64(*x)), _ => None, } } else { None } }, _ => None, } } /// A block can only yield a constant if it only has one constant expression. fn block(&mut self, block: &Block<'_>) -> Option { if block.stmts.is_empty() { block.expr.as_ref().and_then(|b| self.expr(b)) } else { None } } fn ifthenelse(&mut self, cond: &Expr<'_>, then: &Expr<'_>, otherwise: Option<&Expr<'_>>) -> Option { if let Some(Constant::Bool(b)) = self.expr(cond) { if b { self.expr(&*then) } else { otherwise.as_ref().and_then(|expr| self.expr(expr)) } } else { None } } fn binop(&mut self, op: BinOp, left: &Expr<'_>, right: &Expr<'_>) -> Option { let l = self.expr(left)?; let r = self.expr(right); match (l, r) { (Constant::Int(l), Some(Constant::Int(r))) => match *self.typeck_results.expr_ty_opt(left)?.kind() { ty::Int(ity) => { let l = sext(self.lcx.tcx, l, ity); let r = sext(self.lcx.tcx, r, ity); let zext = |n: i128| Constant::Int(unsext(self.lcx.tcx, n, ity)); match op.node { BinOpKind::Add => l.checked_add(r).map(zext), BinOpKind::Sub => l.checked_sub(r).map(zext), BinOpKind::Mul => l.checked_mul(r).map(zext), BinOpKind::Div if r != 0 => l.checked_div(r).map(zext), BinOpKind::Rem if r != 0 => l.checked_rem(r).map(zext), BinOpKind::Shr => l.checked_shr(r.try_into().expect("invalid shift")).map(zext), BinOpKind::Shl => l.checked_shl(r.try_into().expect("invalid shift")).map(zext), BinOpKind::BitXor => Some(zext(l ^ r)), BinOpKind::BitOr => Some(zext(l | r)), BinOpKind::BitAnd => Some(zext(l & r)), BinOpKind::Eq => Some(Constant::Bool(l == r)), BinOpKind::Ne => Some(Constant::Bool(l != r)), BinOpKind::Lt => Some(Constant::Bool(l < r)), BinOpKind::Le => Some(Constant::Bool(l <= r)), BinOpKind::Ge => Some(Constant::Bool(l >= r)), BinOpKind::Gt => Some(Constant::Bool(l > r)), _ => None, } }, ty::Uint(_) => match op.node { BinOpKind::Add => l.checked_add(r).map(Constant::Int), BinOpKind::Sub => l.checked_sub(r).map(Constant::Int), BinOpKind::Mul => l.checked_mul(r).map(Constant::Int), BinOpKind::Div => l.checked_div(r).map(Constant::Int), BinOpKind::Rem => l.checked_rem(r).map(Constant::Int), BinOpKind::Shr => l.checked_shr(r.try_into().expect("shift too large")).map(Constant::Int), BinOpKind::Shl => l.checked_shl(r.try_into().expect("shift too large")).map(Constant::Int), BinOpKind::BitXor => Some(Constant::Int(l ^ r)), BinOpKind::BitOr => Some(Constant::Int(l | r)), BinOpKind::BitAnd => Some(Constant::Int(l & r)), BinOpKind::Eq => Some(Constant::Bool(l == r)), BinOpKind::Ne => Some(Constant::Bool(l != r)), BinOpKind::Lt => Some(Constant::Bool(l < r)), BinOpKind::Le => Some(Constant::Bool(l <= r)), BinOpKind::Ge => Some(Constant::Bool(l >= r)), BinOpKind::Gt => Some(Constant::Bool(l > r)), _ => None, }, _ => None, }, (Constant::F32(l), Some(Constant::F32(r))) => match op.node { BinOpKind::Add => Some(Constant::F32(l + r)), BinOpKind::Sub => Some(Constant::F32(l - r)), BinOpKind::Mul => Some(Constant::F32(l * r)), BinOpKind::Div => Some(Constant::F32(l / r)), BinOpKind::Rem => Some(Constant::F32(l % r)), BinOpKind::Eq => Some(Constant::Bool(l == r)), BinOpKind::Ne => Some(Constant::Bool(l != r)), BinOpKind::Lt => Some(Constant::Bool(l < r)), BinOpKind::Le => Some(Constant::Bool(l <= r)), BinOpKind::Ge => Some(Constant::Bool(l >= r)), BinOpKind::Gt => Some(Constant::Bool(l > r)), _ => None, }, (Constant::F64(l), Some(Constant::F64(r))) => match op.node { BinOpKind::Add => Some(Constant::F64(l + r)), BinOpKind::Sub => Some(Constant::F64(l - r)), BinOpKind::Mul => Some(Constant::F64(l * r)), BinOpKind::Div => Some(Constant::F64(l / r)), BinOpKind::Rem => Some(Constant::F64(l % r)), BinOpKind::Eq => Some(Constant::Bool(l == r)), BinOpKind::Ne => Some(Constant::Bool(l != r)), BinOpKind::Lt => Some(Constant::Bool(l < r)), BinOpKind::Le => Some(Constant::Bool(l <= r)), BinOpKind::Ge => Some(Constant::Bool(l >= r)), BinOpKind::Gt => Some(Constant::Bool(l > r)), _ => None, }, (l, r) => match (op.node, l, r) { (BinOpKind::And, Constant::Bool(false), _) => Some(Constant::Bool(false)), (BinOpKind::Or, Constant::Bool(true), _) => Some(Constant::Bool(true)), (BinOpKind::And, Constant::Bool(true), Some(r)) | (BinOpKind::Or, Constant::Bool(false), Some(r)) => { Some(r) }, (BinOpKind::BitXor, Constant::Bool(l), Some(Constant::Bool(r))) => Some(Constant::Bool(l ^ r)), (BinOpKind::BitAnd, Constant::Bool(l), Some(Constant::Bool(r))) => Some(Constant::Bool(l & r)), (BinOpKind::BitOr, Constant::Bool(l), Some(Constant::Bool(r))) => Some(Constant::Bool(l | r)), _ => None, }, } } } pub fn miri_to_const(result: &ty::Const<'_>) -> Option { use rustc_middle::mir::interpret::ConstValue; match result.val { ty::ConstKind::Value(ConstValue::Scalar(Scalar::Int(int))) => { match result.ty.kind() { ty::Bool => Some(Constant::Bool(int == ScalarInt::TRUE)), ty::Uint(_) | ty::Int(_) => Some(Constant::Int(int.assert_bits(int.size()))), ty::Float(FloatTy::F32) => Some(Constant::F32(f32::from_bits( int.try_into().expect("invalid f32 bit representation"), ))), ty::Float(FloatTy::F64) => Some(Constant::F64(f64::from_bits( int.try_into().expect("invalid f64 bit representation"), ))), ty::RawPtr(type_and_mut) => { if let ty::Uint(_) = type_and_mut.ty.kind() { return Some(Constant::RawPtr(int.assert_bits(int.size()))); } None }, // FIXME: implement other conversions. _ => None, } }, ty::ConstKind::Value(ConstValue::Slice { data, start, end }) => match result.ty.kind() { ty::Ref(_, tam, _) => match tam.kind() { ty::Str => String::from_utf8( data.inspect_with_uninit_and_ptr_outside_interpreter(start..end) .to_owned(), ) .ok() .map(Constant::Str), _ => None, }, _ => None, }, ty::ConstKind::Value(ConstValue::ByRef { alloc, offset: _ }) => match result.ty.kind() { ty::Array(sub_type, len) => match sub_type.kind() { ty::Float(FloatTy::F32) => match miri_to_const(len) { Some(Constant::Int(len)) => alloc .inspect_with_uninit_and_ptr_outside_interpreter(0..(4 * len as usize)) .to_owned() .chunks(4) .map(|chunk| { Some(Constant::F32(f32::from_le_bytes( chunk.try_into().expect("this shouldn't happen"), ))) }) .collect::>>() .map(Constant::Vec), _ => None, }, ty::Float(FloatTy::F64) => match miri_to_const(len) { Some(Constant::Int(len)) => alloc .inspect_with_uninit_and_ptr_outside_interpreter(0..(8 * len as usize)) .to_owned() .chunks(8) .map(|chunk| { Some(Constant::F64(f64::from_le_bytes( chunk.try_into().expect("this shouldn't happen"), ))) }) .collect::>>() .map(Constant::Vec), _ => None, }, // FIXME: implement other array type conversions. _ => None, }, _ => None, }, // FIXME: implement other conversions. _ => None, } }