use clippy_utils::consts::{constant, constant_full_int, miri_to_const, FullInt}; use clippy_utils::diagnostics::{ multispan_sugg, span_lint_and_help, span_lint_and_note, span_lint_and_sugg, span_lint_and_then, }; use clippy_utils::macros::{is_panic, root_macro_call}; use clippy_utils::source::{expr_block, indent_of, snippet, snippet_block, snippet_opt, snippet_with_applicability}; use clippy_utils::sugg::Sugg; use clippy_utils::ty::{implements_trait, is_type_diagnostic_item, peel_mid_ty_refs}; use clippy_utils::visitors::is_local_used; use clippy_utils::{ get_parent_expr, is_lang_ctor, is_lint_allowed, is_refutable, is_unit_expr, is_wild, meets_msrv, msrvs, path_to_local, path_to_local_id, peel_blocks, peel_hir_pat_refs, peel_n_hir_expr_refs, recurse_or_patterns, strip_pat_refs, }; use clippy_utils::{higher, peel_blocks_with_stmt}; use clippy_utils::{paths, search_same, SpanlessEq, SpanlessHash}; use core::iter::{once, ExactSizeIterator}; use if_chain::if_chain; use rustc_ast::ast::{Attribute, LitKind}; use rustc_errors::Applicability; use rustc_hir::def::{CtorKind, DefKind, Res}; use rustc_hir::LangItem::{OptionNone, OptionSome}; use rustc_hir::{ self as hir, Arm, BindingAnnotation, Block, BorrowKind, Expr, ExprKind, Guard, HirId, Local, MatchSource, Mutability, Node, Pat, PatKind, PathSegment, QPath, RangeEnd, TyKind, }; use rustc_hir::{HirIdMap, HirIdSet}; use rustc_lint::{LateContext, LateLintPass, LintContext}; use rustc_middle::ty::{self, Ty, TyS, VariantDef}; use rustc_semver::RustcVersion; use rustc_session::{declare_tool_lint, impl_lint_pass}; use rustc_span::source_map::{Span, Spanned}; use rustc_span::sym; use std::cmp::{max, Ordering}; use std::collections::hash_map::Entry; declare_clippy_lint! { /// ### What it does /// Checks for matches with a single arm where an `if let` /// will usually suffice. /// /// ### Why is this bad? /// Just readability – `if let` nests less than a `match`. /// /// ### Example /// ```rust /// # fn bar(stool: &str) {} /// # let x = Some("abc"); /// // Bad /// match x { /// Some(ref foo) => bar(foo), /// _ => (), /// } /// /// // Good /// if let Some(ref foo) = x { /// bar(foo); /// } /// ``` #[clippy::version = "pre 1.29.0"] pub SINGLE_MATCH, style, "a `match` statement with a single nontrivial arm (i.e., where the other arm is `_ => {}`) instead of `if let`" } declare_clippy_lint! { /// ### What it does /// Checks for matches with two arms where an `if let else` will /// usually suffice. /// /// ### Why is this bad? /// Just readability – `if let` nests less than a `match`. /// /// ### Known problems /// Personal style preferences may differ. /// /// ### Example /// Using `match`: /// /// ```rust /// # fn bar(foo: &usize) {} /// # let other_ref: usize = 1; /// # let x: Option<&usize> = Some(&1); /// match x { /// Some(ref foo) => bar(foo), /// _ => bar(&other_ref), /// } /// ``` /// /// Using `if let` with `else`: /// /// ```rust /// # fn bar(foo: &usize) {} /// # let other_ref: usize = 1; /// # let x: Option<&usize> = Some(&1); /// if let Some(ref foo) = x { /// bar(foo); /// } else { /// bar(&other_ref); /// } /// ``` #[clippy::version = "pre 1.29.0"] pub SINGLE_MATCH_ELSE, pedantic, "a `match` statement with two arms where the second arm's pattern is a placeholder instead of a specific match pattern" } declare_clippy_lint! { /// ### What it does /// Checks for matches where all arms match a reference, /// suggesting to remove the reference and deref the matched expression /// instead. It also checks for `if let &foo = bar` blocks. /// /// ### Why is this bad? /// It just makes the code less readable. That reference /// destructuring adds nothing to the code. /// /// ### Example /// ```rust,ignore /// // Bad /// match x { /// &A(ref y) => foo(y), /// &B => bar(), /// _ => frob(&x), /// } /// /// // Good /// match *x { /// A(ref y) => foo(y), /// B => bar(), /// _ => frob(x), /// } /// ``` #[clippy::version = "pre 1.29.0"] pub MATCH_REF_PATS, style, "a `match` or `if let` with all arms prefixed with `&` instead of deref-ing the match expression" } declare_clippy_lint! { /// ### What it does /// Checks for matches where match expression is a `bool`. It /// suggests to replace the expression with an `if...else` block. /// /// ### Why is this bad? /// It makes the code less readable. /// /// ### Example /// ```rust /// # fn foo() {} /// # fn bar() {} /// let condition: bool = true; /// match condition { /// true => foo(), /// false => bar(), /// } /// ``` /// Use if/else instead: /// ```rust /// # fn foo() {} /// # fn bar() {} /// let condition: bool = true; /// if condition { /// foo(); /// } else { /// bar(); /// } /// ``` #[clippy::version = "pre 1.29.0"] pub MATCH_BOOL, pedantic, "a `match` on a boolean expression instead of an `if..else` block" } declare_clippy_lint! { /// ### What it does /// Checks for overlapping match arms. /// /// ### Why is this bad? /// It is likely to be an error and if not, makes the code /// less obvious. /// /// ### Example /// ```rust /// let x = 5; /// match x { /// 1..=10 => println!("1 ... 10"), /// 5..=15 => println!("5 ... 15"), /// _ => (), /// } /// ``` #[clippy::version = "pre 1.29.0"] pub MATCH_OVERLAPPING_ARM, style, "a `match` with overlapping arms" } declare_clippy_lint! { /// ### What it does /// Checks for arm which matches all errors with `Err(_)` /// and take drastic actions like `panic!`. /// /// ### Why is this bad? /// It is generally a bad practice, similar to /// catching all exceptions in java with `catch(Exception)` /// /// ### Example /// ```rust /// let x: Result = Ok(3); /// match x { /// Ok(_) => println!("ok"), /// Err(_) => panic!("err"), /// } /// ``` #[clippy::version = "pre 1.29.0"] pub MATCH_WILD_ERR_ARM, pedantic, "a `match` with `Err(_)` arm and take drastic actions" } declare_clippy_lint! { /// ### What it does /// Checks for match which is used to add a reference to an /// `Option` value. /// /// ### Why is this bad? /// Using `as_ref()` or `as_mut()` instead is shorter. /// /// ### Example /// ```rust /// let x: Option<()> = None; /// /// // Bad /// let r: Option<&()> = match x { /// None => None, /// Some(ref v) => Some(v), /// }; /// /// // Good /// let r: Option<&()> = x.as_ref(); /// ``` #[clippy::version = "pre 1.29.0"] pub MATCH_AS_REF, complexity, "a `match` on an Option value instead of using `as_ref()` or `as_mut`" } declare_clippy_lint! { /// ### What it does /// Checks for wildcard enum matches using `_`. /// /// ### Why is this bad? /// New enum variants added by library updates can be missed. /// /// ### Known problems /// Suggested replacements may be incorrect if guards exhaustively cover some /// variants, and also may not use correct path to enum if it's not present in the current scope. /// /// ### Example /// ```rust /// # enum Foo { A(usize), B(usize) } /// # let x = Foo::B(1); /// // Bad /// match x { /// Foo::A(_) => {}, /// _ => {}, /// } /// /// // Good /// match x { /// Foo::A(_) => {}, /// Foo::B(_) => {}, /// } /// ``` #[clippy::version = "1.34.0"] pub WILDCARD_ENUM_MATCH_ARM, restriction, "a wildcard enum match arm using `_`" } declare_clippy_lint! { /// ### What it does /// Checks for wildcard enum matches for a single variant. /// /// ### Why is this bad? /// New enum variants added by library updates can be missed. /// /// ### Known problems /// Suggested replacements may not use correct path to enum /// if it's not present in the current scope. /// /// ### Example /// ```rust /// # enum Foo { A, B, C } /// # let x = Foo::B; /// // Bad /// match x { /// Foo::A => {}, /// Foo::B => {}, /// _ => {}, /// } /// /// // Good /// match x { /// Foo::A => {}, /// Foo::B => {}, /// Foo::C => {}, /// } /// ``` #[clippy::version = "1.45.0"] pub MATCH_WILDCARD_FOR_SINGLE_VARIANTS, pedantic, "a wildcard enum match for a single variant" } declare_clippy_lint! { /// ### What it does /// Checks for wildcard pattern used with others patterns in same match arm. /// /// ### Why is this bad? /// Wildcard pattern already covers any other pattern as it will match anyway. /// It makes the code less readable, especially to spot wildcard pattern use in match arm. /// /// ### Example /// ```rust /// // Bad /// match "foo" { /// "a" => {}, /// "bar" | _ => {}, /// } /// /// // Good /// match "foo" { /// "a" => {}, /// _ => {}, /// } /// ``` #[clippy::version = "1.42.0"] pub WILDCARD_IN_OR_PATTERNS, complexity, "a wildcard pattern used with others patterns in same match arm" } declare_clippy_lint! { /// ### What it does /// Checks for matches being used to destructure a single-variant enum /// or tuple struct where a `let` will suffice. /// /// ### Why is this bad? /// Just readability – `let` doesn't nest, whereas a `match` does. /// /// ### Example /// ```rust /// enum Wrapper { /// Data(i32), /// } /// /// let wrapper = Wrapper::Data(42); /// /// let data = match wrapper { /// Wrapper::Data(i) => i, /// }; /// ``` /// /// The correct use would be: /// ```rust /// enum Wrapper { /// Data(i32), /// } /// /// let wrapper = Wrapper::Data(42); /// let Wrapper::Data(data) = wrapper; /// ``` #[clippy::version = "pre 1.29.0"] pub INFALLIBLE_DESTRUCTURING_MATCH, style, "a `match` statement with a single infallible arm instead of a `let`" } declare_clippy_lint! { /// ### What it does /// Checks for useless match that binds to only one value. /// /// ### Why is this bad? /// Readability and needless complexity. /// /// ### Known problems /// Suggested replacements may be incorrect when `match` /// is actually binding temporary value, bringing a 'dropped while borrowed' error. /// /// ### Example /// ```rust /// # let a = 1; /// # let b = 2; /// /// // Bad /// match (a, b) { /// (c, d) => { /// // useless match /// } /// } /// /// // Good /// let (c, d) = (a, b); /// ``` #[clippy::version = "1.43.0"] pub MATCH_SINGLE_BINDING, complexity, "a match with a single binding instead of using `let` statement" } declare_clippy_lint! { /// ### What it does /// Checks for unnecessary '..' pattern binding on struct when all fields are explicitly matched. /// /// ### Why is this bad? /// Correctness and readability. It's like having a wildcard pattern after /// matching all enum variants explicitly. /// /// ### Example /// ```rust /// # struct A { a: i32 } /// let a = A { a: 5 }; /// /// // Bad /// match a { /// A { a: 5, .. } => {}, /// _ => {}, /// } /// /// // Good /// match a { /// A { a: 5 } => {}, /// _ => {}, /// } /// ``` #[clippy::version = "1.43.0"] pub REST_PAT_IN_FULLY_BOUND_STRUCTS, restriction, "a match on a struct that binds all fields but still uses the wildcard pattern" } declare_clippy_lint! { /// ### What it does /// Lint for redundant pattern matching over `Result`, `Option`, /// `std::task::Poll` or `std::net::IpAddr` /// /// ### Why is this bad? /// It's more concise and clear to just use the proper /// utility function /// /// ### Known problems /// This will change the drop order for the matched type. Both `if let` and /// `while let` will drop the value at the end of the block, both `if` and `while` will drop the /// value before entering the block. For most types this change will not matter, but for a few /// types this will not be an acceptable change (e.g. locks). See the /// [reference](https://doc.rust-lang.org/reference/destructors.html#drop-scopes) for more about /// drop order. /// /// ### Example /// ```rust /// # use std::task::Poll; /// # use std::net::{IpAddr, Ipv4Addr, Ipv6Addr}; /// if let Ok(_) = Ok::(42) {} /// if let Err(_) = Err::(42) {} /// if let None = None::<()> {} /// if let Some(_) = Some(42) {} /// if let Poll::Pending = Poll::Pending::<()> {} /// if let Poll::Ready(_) = Poll::Ready(42) {} /// if let IpAddr::V4(_) = IpAddr::V4(Ipv4Addr::LOCALHOST) {} /// if let IpAddr::V6(_) = IpAddr::V6(Ipv6Addr::LOCALHOST) {} /// match Ok::(42) { /// Ok(_) => true, /// Err(_) => false, /// }; /// ``` /// /// The more idiomatic use would be: /// /// ```rust /// # use std::task::Poll; /// # use std::net::{IpAddr, Ipv4Addr, Ipv6Addr}; /// if Ok::(42).is_ok() {} /// if Err::(42).is_err() {} /// if None::<()>.is_none() {} /// if Some(42).is_some() {} /// if Poll::Pending::<()>.is_pending() {} /// if Poll::Ready(42).is_ready() {} /// if IpAddr::V4(Ipv4Addr::LOCALHOST).is_ipv4() {} /// if IpAddr::V6(Ipv6Addr::LOCALHOST).is_ipv6() {} /// Ok::(42).is_ok(); /// ``` #[clippy::version = "1.31.0"] pub REDUNDANT_PATTERN_MATCHING, style, "use the proper utility function avoiding an `if let`" } declare_clippy_lint! { /// ### What it does /// Checks for `match` or `if let` expressions producing a /// `bool` that could be written using `matches!` /// /// ### Why is this bad? /// Readability and needless complexity. /// /// ### Known problems /// This lint falsely triggers, if there are arms with /// `cfg` attributes that remove an arm evaluating to `false`. /// /// ### Example /// ```rust /// let x = Some(5); /// /// // Bad /// let a = match x { /// Some(0) => true, /// _ => false, /// }; /// /// let a = if let Some(0) = x { /// true /// } else { /// false /// }; /// /// // Good /// let a = matches!(x, Some(0)); /// ``` #[clippy::version = "1.47.0"] pub MATCH_LIKE_MATCHES_MACRO, style, "a match that could be written with the matches! macro" } declare_clippy_lint! { /// ### What it does /// Checks for `match` with identical arm bodies. /// /// ### Why is this bad? /// This is probably a copy & paste error. If arm bodies /// are the same on purpose, you can factor them /// [using `|`](https://doc.rust-lang.org/book/patterns.html#multiple-patterns). /// /// ### Known problems /// False positive possible with order dependent `match` /// (see issue /// [#860](https://github.com/rust-lang/rust-clippy/issues/860)). /// /// ### Example /// ```rust,ignore /// match foo { /// Bar => bar(), /// Quz => quz(), /// Baz => bar(), // <= oops /// } /// ``` /// /// This should probably be /// ```rust,ignore /// match foo { /// Bar => bar(), /// Quz => quz(), /// Baz => baz(), // <= fixed /// } /// ``` /// /// or if the original code was not a typo: /// ```rust,ignore /// match foo { /// Bar | Baz => bar(), // <= shows the intent better /// Quz => quz(), /// } /// ``` #[clippy::version = "pre 1.29.0"] pub MATCH_SAME_ARMS, pedantic, "`match` with identical arm bodies" } #[derive(Default)] pub struct Matches { msrv: Option, infallible_destructuring_match_linted: bool, } impl Matches { #[must_use] pub fn new(msrv: Option) -> Self { Self { msrv, ..Matches::default() } } } impl_lint_pass!(Matches => [ SINGLE_MATCH, MATCH_REF_PATS, MATCH_BOOL, SINGLE_MATCH_ELSE, MATCH_OVERLAPPING_ARM, MATCH_WILD_ERR_ARM, MATCH_AS_REF, WILDCARD_ENUM_MATCH_ARM, MATCH_WILDCARD_FOR_SINGLE_VARIANTS, WILDCARD_IN_OR_PATTERNS, MATCH_SINGLE_BINDING, INFALLIBLE_DESTRUCTURING_MATCH, REST_PAT_IN_FULLY_BOUND_STRUCTS, REDUNDANT_PATTERN_MATCHING, MATCH_LIKE_MATCHES_MACRO, MATCH_SAME_ARMS, ]); impl<'tcx> LateLintPass<'tcx> for Matches { fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) { if expr.span.from_expansion() { return; } redundant_pattern_match::check(cx, expr); if meets_msrv(self.msrv.as_ref(), &msrvs::MATCHES_MACRO) { if !check_match_like_matches(cx, expr) { lint_match_arms(cx, expr); } } else { lint_match_arms(cx, expr); } if let ExprKind::Match(ex, arms, MatchSource::Normal) = expr.kind { check_single_match(cx, ex, arms, expr); check_match_bool(cx, ex, arms, expr); check_overlapping_arms(cx, ex, arms); check_wild_err_arm(cx, ex, arms); check_wild_enum_match(cx, ex, arms); check_match_as_ref(cx, ex, arms, expr); check_wild_in_or_pats(cx, arms); if self.infallible_destructuring_match_linted { self.infallible_destructuring_match_linted = false; } else { check_match_single_binding(cx, ex, arms, expr); } } if let ExprKind::Match(ex, arms, _) = expr.kind { check_match_ref_pats(cx, ex, arms.iter().map(|el| el.pat), expr); } } fn check_local(&mut self, cx: &LateContext<'tcx>, local: &'tcx Local<'_>) { if_chain! { if !local.span.from_expansion(); if let Some(expr) = local.init; if let ExprKind::Match(target, arms, MatchSource::Normal) = expr.kind; if arms.len() == 1 && arms[0].guard.is_none(); if let PatKind::TupleStruct( QPath::Resolved(None, variant_name), args, _) = arms[0].pat.kind; if args.len() == 1; if let PatKind::Binding(_, arg, ..) = strip_pat_refs(&args[0]).kind; let body = peel_blocks(arms[0].body); if path_to_local_id(body, arg); then { let mut applicability = Applicability::MachineApplicable; self.infallible_destructuring_match_linted = true; span_lint_and_sugg( cx, INFALLIBLE_DESTRUCTURING_MATCH, local.span, "you seem to be trying to use `match` to destructure a single infallible pattern. \ Consider using `let`", "try this", format!( "let {}({}) = {};", snippet_with_applicability(cx, variant_name.span, "..", &mut applicability), snippet_with_applicability(cx, local.pat.span, "..", &mut applicability), snippet_with_applicability(cx, target.span, "..", &mut applicability), ), applicability, ); } } } fn check_pat(&mut self, cx: &LateContext<'tcx>, pat: &'tcx Pat<'_>) { if_chain! { if !pat.span.from_expansion(); if let PatKind::Struct(QPath::Resolved(_, path), fields, true) = pat.kind; if let Some(def_id) = path.res.opt_def_id(); let ty = cx.tcx.type_of(def_id); if let ty::Adt(def, _) = ty.kind(); if def.is_struct() || def.is_union(); if fields.len() == def.non_enum_variant().fields.len(); then { span_lint_and_help( cx, REST_PAT_IN_FULLY_BOUND_STRUCTS, pat.span, "unnecessary use of `..` pattern in struct binding. All fields were already bound", None, "consider removing `..` from this binding", ); } } } extract_msrv_attr!(LateContext); } #[rustfmt::skip] fn check_single_match(cx: &LateContext<'_>, ex: &Expr<'_>, arms: &[Arm<'_>], expr: &Expr<'_>) { if arms.len() == 2 && arms[0].guard.is_none() && arms[1].guard.is_none() { if expr.span.from_expansion() { // Don't lint match expressions present in // macro_rules! block return; } if let PatKind::Or(..) = arms[0].pat.kind { // don't lint for or patterns for now, this makes // the lint noisy in unnecessary situations return; } let els = arms[1].body; let els = if is_unit_expr(peel_blocks(els)) { None } else if let ExprKind::Block(Block { stmts, expr: block_expr, .. }, _) = els.kind { if stmts.len() == 1 && block_expr.is_none() || stmts.is_empty() && block_expr.is_some() { // single statement/expr "else" block, don't lint return; } // block with 2+ statements or 1 expr and 1+ statement Some(els) } else { // not a block, don't lint return; }; let ty = cx.typeck_results().expr_ty(ex); if *ty.kind() != ty::Bool || is_lint_allowed(cx, MATCH_BOOL, ex.hir_id) { check_single_match_single_pattern(cx, ex, arms, expr, els); check_single_match_opt_like(cx, ex, arms, expr, els); } } } fn check_single_match_single_pattern( cx: &LateContext<'_>, ex: &Expr<'_>, arms: &[Arm<'_>], expr: &Expr<'_>, els: Option<&Expr<'_>>, ) { if is_wild(arms[1].pat) { report_single_match_single_pattern(cx, ex, arms, expr, els); } } fn report_single_match_single_pattern( cx: &LateContext<'_>, ex: &Expr<'_>, arms: &[Arm<'_>], expr: &Expr<'_>, els: Option<&Expr<'_>>, ) { let lint = if els.is_some() { SINGLE_MATCH_ELSE } else { SINGLE_MATCH }; let els_str = els.map_or(String::new(), |els| { format!(" else {}", expr_block(cx, els, None, "..", Some(expr.span))) }); let (pat, pat_ref_count) = peel_hir_pat_refs(arms[0].pat); let (msg, sugg) = if_chain! { if let PatKind::Path(_) | PatKind::Lit(_) = pat.kind; let (ty, ty_ref_count) = peel_mid_ty_refs(cx.typeck_results().expr_ty(ex)); if let Some(spe_trait_id) = cx.tcx.lang_items().structural_peq_trait(); if let Some(pe_trait_id) = cx.tcx.lang_items().eq_trait(); if ty.is_integral() || ty.is_char() || ty.is_str() || (implements_trait(cx, ty, spe_trait_id, &[]) && implements_trait(cx, ty, pe_trait_id, &[ty.into()])); then { // scrutinee derives PartialEq and the pattern is a constant. let pat_ref_count = match pat.kind { // string literals are already a reference. PatKind::Lit(Expr { kind: ExprKind::Lit(lit), .. }) if lit.node.is_str() => pat_ref_count + 1, _ => pat_ref_count, }; // References are only implicitly added to the pattern, so no overflow here. // e.g. will work: match &Some(_) { Some(_) => () } // will not: match Some(_) { &Some(_) => () } let ref_count_diff = ty_ref_count - pat_ref_count; // Try to remove address of expressions first. let (ex, removed) = peel_n_hir_expr_refs(ex, ref_count_diff); let ref_count_diff = ref_count_diff - removed; let msg = "you seem to be trying to use `match` for an equality check. Consider using `if`"; let sugg = format!( "if {} == {}{} {}{}", snippet(cx, ex.span, ".."), // PartialEq for different reference counts may not exist. "&".repeat(ref_count_diff), snippet(cx, arms[0].pat.span, ".."), expr_block(cx, arms[0].body, None, "..", Some(expr.span)), els_str, ); (msg, sugg) } else { let msg = "you seem to be trying to use `match` for destructuring a single pattern. Consider using `if let`"; let sugg = format!( "if let {} = {} {}{}", snippet(cx, arms[0].pat.span, ".."), snippet(cx, ex.span, ".."), expr_block(cx, arms[0].body, None, "..", Some(expr.span)), els_str, ); (msg, sugg) } }; span_lint_and_sugg( cx, lint, expr.span, msg, "try this", sugg, Applicability::HasPlaceholders, ); } fn check_single_match_opt_like( cx: &LateContext<'_>, ex: &Expr<'_>, arms: &[Arm<'_>], expr: &Expr<'_>, els: Option<&Expr<'_>>, ) { // list of candidate `Enum`s we know will never get any more members let candidates = &[ (&paths::COW, "Borrowed"), (&paths::COW, "Cow::Borrowed"), (&paths::COW, "Cow::Owned"), (&paths::COW, "Owned"), (&paths::OPTION, "None"), (&paths::RESULT, "Err"), (&paths::RESULT, "Ok"), ]; // We want to suggest to exclude an arm that contains only wildcards or forms the ehaustive // match with the second branch. if !contains_only_wilds(arms[1].pat) && !form_exhaustive_tuples(arms[0].pat, arms[1].pat) { return; } let mut paths = Vec::new(); if !collect_pat_paths(&mut paths, arms[1].pat) { return; } let in_candidate_enum = |path: &String| -> bool { for &(_, pat_path) in candidates { if path == pat_path { return true; } } false }; if paths.iter().all(in_candidate_enum) { report_single_match_single_pattern(cx, ex, arms, expr, els); } } /// Collects paths from the given paths. Returns true if the given pattern could be simplified, /// false otherwise. fn collect_pat_paths(acc: &mut Vec, pat: &Pat<'_>) -> bool { match pat.kind { PatKind::Wild => true, PatKind::Tuple(inner, _) => { for p in inner { if !collect_pat_paths(acc, p) { return false; } } true }, PatKind::TupleStruct(ref path, ..) => { acc.push(rustc_hir_pretty::to_string(rustc_hir_pretty::NO_ANN, |s| { s.print_qpath(path, false); })); true }, PatKind::Binding(BindingAnnotation::Unannotated, .., ident, None) => { acc.push(ident.to_string()); true }, PatKind::Path(ref path) => { acc.push(rustc_hir_pretty::to_string(rustc_hir_pretty::NO_ANN, |s| { s.print_qpath(path, false); })); true }, _ => false, } } /// Returns true if the given arm of pattern matching contains wildcard patterns. fn contains_only_wilds(pat: &Pat<'_>) -> bool { match pat.kind { PatKind::Wild => true, PatKind::Tuple(inner, _) | PatKind::TupleStruct(_, inner, ..) => inner.iter().all(contains_only_wilds), _ => false, } } /// Returns true if the given patterns form the tuples that exhaustively matches all possible /// parameters. /// /// Here are some examples: /// /// ``` /// // Doesn't form exhaustive match, because the first arm may contain not only E::V. /// match x { /// (Some(E::V), _) => todo!(), /// (None, _) => {} /// } /// /// // Forms exhaustive match, because the patterns cover all possible cases at the same positions. /// match x { /// (Some(_), _) => todo!(), /// (None, _) => {} /// } /// ``` fn form_exhaustive_tuples(left: &Pat<'_>, right: &Pat<'_>) -> bool { match (&left.kind, &right.kind) { (PatKind::Wild, _) | (_, PatKind::Wild) => true, (PatKind::Tuple(left_in, left_pos), PatKind::Tuple(right_in, right_pos)) => { // We don't actually know the position and presence of the `..` (dotdot) operator in // the arms, so we need to evaluate the correct offsets here in order to iterate in // both arms at the same time. let len = max( left_in.len() + { if left_pos.is_some() { 1 } else { 0 } }, right_in.len() + { if right_pos.is_some() { 1 } else { 0 } }, ); let mut left_pos = left_pos.unwrap_or(usize::MAX); let mut right_pos = right_pos.unwrap_or(usize::MAX); let mut left_span = 0; let mut right_span = 0; for i in 0..len { let mut found_dotdot = false; if i == left_pos { left_span += 1; if left_span < len - left_in.len() { left_pos += 1; } found_dotdot = true; } if i == right_pos { right_span += 1; if right_span < len - right_in.len() { right_pos += 1; } found_dotdot = true; } if found_dotdot { continue; } if !contains_only_wilds(&left_in[i - left_span]) && !contains_only_wilds(&right_in[i - right_span]) { return false; } } true }, _ => false, } } fn check_match_bool(cx: &LateContext<'_>, ex: &Expr<'_>, arms: &[Arm<'_>], expr: &Expr<'_>) { // Type of expression is `bool`. if *cx.typeck_results().expr_ty(ex).kind() == ty::Bool { span_lint_and_then( cx, MATCH_BOOL, expr.span, "you seem to be trying to match on a boolean expression", move |diag| { if arms.len() == 2 { // no guards let exprs = if let PatKind::Lit(arm_bool) = arms[0].pat.kind { if let ExprKind::Lit(ref lit) = arm_bool.kind { match lit.node { LitKind::Bool(true) => Some((&*arms[0].body, &*arms[1].body)), LitKind::Bool(false) => Some((&*arms[1].body, &*arms[0].body)), _ => None, } } else { None } } else { None }; if let Some((true_expr, false_expr)) = exprs { let sugg = match (is_unit_expr(true_expr), is_unit_expr(false_expr)) { (false, false) => Some(format!( "if {} {} else {}", snippet(cx, ex.span, "b"), expr_block(cx, true_expr, None, "..", Some(expr.span)), expr_block(cx, false_expr, None, "..", Some(expr.span)) )), (false, true) => Some(format!( "if {} {}", snippet(cx, ex.span, "b"), expr_block(cx, true_expr, None, "..", Some(expr.span)) )), (true, false) => { let test = Sugg::hir(cx, ex, ".."); Some(format!( "if {} {}", !test, expr_block(cx, false_expr, None, "..", Some(expr.span)) )) }, (true, true) => None, }; if let Some(sugg) = sugg { diag.span_suggestion( expr.span, "consider using an `if`/`else` expression", sugg, Applicability::HasPlaceholders, ); } } } }, ); } } fn check_overlapping_arms<'tcx>(cx: &LateContext<'tcx>, ex: &'tcx Expr<'_>, arms: &'tcx [Arm<'_>]) { if arms.len() >= 2 && cx.typeck_results().expr_ty(ex).is_integral() { let ranges = all_ranges(cx, arms, cx.typeck_results().expr_ty(ex)); if !ranges.is_empty() { if let Some((start, end)) = overlapping(&ranges) { span_lint_and_note( cx, MATCH_OVERLAPPING_ARM, start.span, "some ranges overlap", Some(end.span), "overlaps with this", ); } } } } fn check_wild_err_arm<'tcx>(cx: &LateContext<'tcx>, ex: &Expr<'tcx>, arms: &[Arm<'tcx>]) { let ex_ty = cx.typeck_results().expr_ty(ex).peel_refs(); if is_type_diagnostic_item(cx, ex_ty, sym::Result) { for arm in arms { if let PatKind::TupleStruct(ref path, inner, _) = arm.pat.kind { let path_str = rustc_hir_pretty::to_string(rustc_hir_pretty::NO_ANN, |s| s.print_qpath(path, false)); if path_str == "Err" { let mut matching_wild = inner.iter().any(is_wild); let mut ident_bind_name = String::from("_"); if !matching_wild { // Looking for unused bindings (i.e.: `_e`) for pat in inner.iter() { if let PatKind::Binding(_, id, ident, None) = pat.kind { if ident.as_str().starts_with('_') && !is_local_used(cx, arm.body, id) { ident_bind_name = ident.name.as_str().to_string(); matching_wild = true; } } } } if_chain! { if matching_wild; if let Some(macro_call) = root_macro_call(peel_blocks_with_stmt(arm.body).span); if is_panic(cx, macro_call.def_id); then { // `Err(_)` or `Err(_e)` arm with `panic!` found span_lint_and_note(cx, MATCH_WILD_ERR_ARM, arm.pat.span, &format!("`Err({})` matches all errors", &ident_bind_name), None, "match each error separately or use the error output, or use `.except(msg)` if the error case is unreachable", ); } } } } } } } enum CommonPrefixSearcher<'a> { None, Path(&'a [PathSegment<'a>]), Mixed, } impl<'a> CommonPrefixSearcher<'a> { fn with_path(&mut self, path: &'a [PathSegment<'a>]) { match path { [path @ .., _] => self.with_prefix(path), [] => (), } } fn with_prefix(&mut self, path: &'a [PathSegment<'a>]) { match self { Self::None => *self = Self::Path(path), Self::Path(self_path) if path .iter() .map(|p| p.ident.name) .eq(self_path.iter().map(|p| p.ident.name)) => {}, Self::Path(_) => *self = Self::Mixed, Self::Mixed => (), } } } fn is_hidden(cx: &LateContext<'_>, variant_def: &VariantDef) -> bool { let attrs = cx.tcx.get_attrs(variant_def.def_id); clippy_utils::attrs::is_doc_hidden(attrs) || clippy_utils::attrs::is_unstable(attrs) } #[allow(clippy::too_many_lines)] fn check_wild_enum_match(cx: &LateContext<'_>, ex: &Expr<'_>, arms: &[Arm<'_>]) { let ty = cx.typeck_results().expr_ty(ex).peel_refs(); let adt_def = match ty.kind() { ty::Adt(adt_def, _) if adt_def.is_enum() && !(is_type_diagnostic_item(cx, ty, sym::Option) || is_type_diagnostic_item(cx, ty, sym::Result)) => { adt_def }, _ => return, }; // First pass - check for violation, but don't do much book-keeping because this is hopefully // the uncommon case, and the book-keeping is slightly expensive. let mut wildcard_span = None; let mut wildcard_ident = None; let mut has_non_wild = false; for arm in arms { match peel_hir_pat_refs(arm.pat).0.kind { PatKind::Wild => wildcard_span = Some(arm.pat.span), PatKind::Binding(_, _, ident, None) => { wildcard_span = Some(arm.pat.span); wildcard_ident = Some(ident); }, _ => has_non_wild = true, } } let wildcard_span = match wildcard_span { Some(x) if has_non_wild => x, _ => return, }; // Accumulate the variants which should be put in place of the wildcard because they're not // already covered. let has_hidden = adt_def.variants.iter().any(|x| is_hidden(cx, x)); let mut missing_variants: Vec<_> = adt_def.variants.iter().filter(|x| !is_hidden(cx, x)).collect(); let mut path_prefix = CommonPrefixSearcher::None; for arm in arms { // Guards mean that this case probably isn't exhaustively covered. Technically // this is incorrect, as we should really check whether each variant is exhaustively // covered by the set of guards that cover it, but that's really hard to do. recurse_or_patterns(arm.pat, |pat| { let path = match &peel_hir_pat_refs(pat).0.kind { PatKind::Path(path) => { #[allow(clippy::match_same_arms)] let id = match cx.qpath_res(path, pat.hir_id) { Res::Def( DefKind::Const | DefKind::ConstParam | DefKind::AnonConst | DefKind::InlineConst, _, ) => return, Res::Def(_, id) => id, _ => return, }; if arm.guard.is_none() { missing_variants.retain(|e| e.ctor_def_id != Some(id)); } path }, PatKind::TupleStruct(path, patterns, ..) => { if let Some(id) = cx.qpath_res(path, pat.hir_id).opt_def_id() { if arm.guard.is_none() && patterns.iter().all(|p| !is_refutable(cx, p)) { missing_variants.retain(|e| e.ctor_def_id != Some(id)); } } path }, PatKind::Struct(path, patterns, ..) => { if let Some(id) = cx.qpath_res(path, pat.hir_id).opt_def_id() { if arm.guard.is_none() && patterns.iter().all(|p| !is_refutable(cx, p.pat)) { missing_variants.retain(|e| e.def_id != id); } } path }, _ => return, }; match path { QPath::Resolved(_, path) => path_prefix.with_path(path.segments), QPath::TypeRelative( hir::Ty { kind: TyKind::Path(QPath::Resolved(_, path)), .. }, _, ) => path_prefix.with_prefix(path.segments), _ => (), } }); } let format_suggestion = |variant: &VariantDef| { format!( "{}{}{}{}", if let Some(ident) = wildcard_ident { format!("{} @ ", ident.name) } else { String::new() }, if let CommonPrefixSearcher::Path(path_prefix) = path_prefix { let mut s = String::new(); for seg in path_prefix { s.push_str(seg.ident.as_str()); s.push_str("::"); } s } else { let mut s = cx.tcx.def_path_str(adt_def.did); s.push_str("::"); s }, variant.name, match variant.ctor_kind { CtorKind::Fn if variant.fields.len() == 1 => "(_)", CtorKind::Fn => "(..)", CtorKind::Const => "", CtorKind::Fictive => "{ .. }", } ) }; match missing_variants.as_slice() { [] => (), [x] if !adt_def.is_variant_list_non_exhaustive() && !has_hidden => span_lint_and_sugg( cx, MATCH_WILDCARD_FOR_SINGLE_VARIANTS, wildcard_span, "wildcard matches only a single variant and will also match any future added variants", "try this", format_suggestion(x), Applicability::MaybeIncorrect, ), variants => { let mut suggestions: Vec<_> = variants.iter().copied().map(format_suggestion).collect(); let message = if adt_def.is_variant_list_non_exhaustive() || has_hidden { suggestions.push("_".into()); "wildcard matches known variants and will also match future added variants" } else { "wildcard match will also match any future added variants" }; span_lint_and_sugg( cx, WILDCARD_ENUM_MATCH_ARM, wildcard_span, message, "try this", suggestions.join(" | "), Applicability::MaybeIncorrect, ); }, }; } fn check_match_ref_pats<'a, 'b, I>(cx: &LateContext<'_>, ex: &Expr<'_>, pats: I, expr: &Expr<'_>) where 'b: 'a, I: Clone + Iterator>, { if !has_multiple_ref_pats(pats.clone()) { return; } let (first_sugg, msg, title); let span = ex.span.source_callsite(); if let ExprKind::AddrOf(BorrowKind::Ref, Mutability::Not, inner) = ex.kind { first_sugg = once((span, Sugg::hir_with_macro_callsite(cx, inner, "..").to_string())); msg = "try"; title = "you don't need to add `&` to both the expression and the patterns"; } else { first_sugg = once((span, Sugg::hir_with_macro_callsite(cx, ex, "..").deref().to_string())); msg = "instead of prefixing all patterns with `&`, you can dereference the expression"; title = "you don't need to add `&` to all patterns"; } let remaining_suggs = pats.filter_map(|pat| { if let PatKind::Ref(refp, _) = pat.kind { Some((pat.span, snippet(cx, refp.span, "..").to_string())) } else { None } }); span_lint_and_then(cx, MATCH_REF_PATS, expr.span, title, |diag| { if !expr.span.from_expansion() { multispan_sugg(diag, msg, first_sugg.chain(remaining_suggs)); } }); } fn check_match_as_ref(cx: &LateContext<'_>, ex: &Expr<'_>, arms: &[Arm<'_>], expr: &Expr<'_>) { if arms.len() == 2 && arms[0].guard.is_none() && arms[1].guard.is_none() { let arm_ref: Option = if is_none_arm(cx, &arms[0]) { is_ref_some_arm(cx, &arms[1]) } else if is_none_arm(cx, &arms[1]) { is_ref_some_arm(cx, &arms[0]) } else { None }; if let Some(rb) = arm_ref { let suggestion = if rb == BindingAnnotation::Ref { "as_ref" } else { "as_mut" }; let output_ty = cx.typeck_results().expr_ty(expr); let input_ty = cx.typeck_results().expr_ty(ex); let cast = if_chain! { if let ty::Adt(_, substs) = input_ty.kind(); let input_ty = substs.type_at(0); if let ty::Adt(_, substs) = output_ty.kind(); let output_ty = substs.type_at(0); if let ty::Ref(_, output_ty, _) = *output_ty.kind(); if input_ty != output_ty; then { ".map(|x| x as _)" } else { "" } }; let mut applicability = Applicability::MachineApplicable; span_lint_and_sugg( cx, MATCH_AS_REF, expr.span, &format!("use `{}()` instead", suggestion), "try this", format!( "{}.{}(){}", snippet_with_applicability(cx, ex.span, "_", &mut applicability), suggestion, cast, ), applicability, ); } } } fn check_wild_in_or_pats(cx: &LateContext<'_>, arms: &[Arm<'_>]) { for arm in arms { if let PatKind::Or(fields) = arm.pat.kind { // look for multiple fields in this arm that contains at least one Wild pattern if fields.len() > 1 && fields.iter().any(is_wild) { span_lint_and_help( cx, WILDCARD_IN_OR_PATTERNS, arm.pat.span, "wildcard pattern covers any other pattern as it will match anyway", None, "consider handling `_` separately", ); } } } } /// Lint a `match` or `if let .. { .. } else { .. }` expr that could be replaced by `matches!` fn check_match_like_matches<'tcx>(cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) -> bool { if let Some(higher::IfLet { let_pat, let_expr, if_then, if_else: Some(if_else), }) = higher::IfLet::hir(cx, expr) { return find_matches_sugg( cx, let_expr, IntoIterator::into_iter([(&[][..], Some(let_pat), if_then, None), (&[][..], None, if_else, None)]), expr, true, ); } if let ExprKind::Match(scrut, arms, MatchSource::Normal) = expr.kind { return find_matches_sugg( cx, scrut, arms.iter().map(|arm| { ( cx.tcx.hir().attrs(arm.hir_id), Some(arm.pat), arm.body, arm.guard.as_ref(), ) }), expr, false, ); } false } /// Lint a `match` or `if let` for replacement by `matches!` fn find_matches_sugg<'a, 'b, I>( cx: &LateContext<'_>, ex: &Expr<'_>, mut iter: I, expr: &Expr<'_>, is_if_let: bool, ) -> bool where 'b: 'a, I: Clone + DoubleEndedIterator + ExactSizeIterator + Iterator< Item = ( &'a [Attribute], Option<&'a Pat<'b>>, &'a Expr<'b>, Option<&'a Guard<'b>>, ), >, { if_chain! { if iter.len() >= 2; if cx.typeck_results().expr_ty(expr).is_bool(); if let Some((_, last_pat_opt, last_expr, _)) = iter.next_back(); let iter_without_last = iter.clone(); if let Some((first_attrs, _, first_expr, first_guard)) = iter.next(); if let Some(b0) = find_bool_lit(&first_expr.kind, is_if_let); if let Some(b1) = find_bool_lit(&last_expr.kind, is_if_let); if b0 != b1; if first_guard.is_none() || iter.len() == 0; if first_attrs.is_empty(); if iter .all(|arm| { find_bool_lit(&arm.2.kind, is_if_let).map_or(false, |b| b == b0) && arm.3.is_none() && arm.0.is_empty() }); then { if let Some(last_pat) = last_pat_opt { if !is_wild(last_pat) { return false; } } // The suggestion may be incorrect, because some arms can have `cfg` attributes // evaluated into `false` and so such arms will be stripped before. let mut applicability = Applicability::MaybeIncorrect; let pat = { use itertools::Itertools as _; iter_without_last .filter_map(|arm| { let pat_span = arm.1?.span; Some(snippet_with_applicability(cx, pat_span, "..", &mut applicability)) }) .join(" | ") }; let pat_and_guard = if let Some(Guard::If(g)) = first_guard { format!("{} if {}", pat, snippet_with_applicability(cx, g.span, "..", &mut applicability)) } else { pat }; // strip potential borrows (#6503), but only if the type is a reference let mut ex_new = ex; if let ExprKind::AddrOf(BorrowKind::Ref, .., ex_inner) = ex.kind { if let ty::Ref(..) = cx.typeck_results().expr_ty(ex_inner).kind() { ex_new = ex_inner; } }; span_lint_and_sugg( cx, MATCH_LIKE_MATCHES_MACRO, expr.span, &format!("{} expression looks like `matches!` macro", if is_if_let { "if let .. else" } else { "match" }), "try this", format!( "{}matches!({}, {})", if b0 { "" } else { "!" }, snippet_with_applicability(cx, ex_new.span, "..", &mut applicability), pat_and_guard, ), applicability, ); true } else { false } } } /// Extract a `bool` or `{ bool }` fn find_bool_lit(ex: &ExprKind<'_>, is_if_let: bool) -> Option { match ex { ExprKind::Lit(Spanned { node: LitKind::Bool(b), .. }) => Some(*b), ExprKind::Block( rustc_hir::Block { stmts: &[], expr: Some(exp), .. }, _, ) if is_if_let => { if let ExprKind::Lit(Spanned { node: LitKind::Bool(b), .. }) = exp.kind { Some(b) } else { None } }, _ => None, } } #[allow(clippy::too_many_lines)] fn check_match_single_binding<'a>(cx: &LateContext<'a>, ex: &Expr<'a>, arms: &[Arm<'_>], expr: &Expr<'_>) { if expr.span.from_expansion() || arms.len() != 1 || is_refutable(cx, arms[0].pat) { return; } // HACK: // This is a hack to deal with arms that are excluded by macros like `#[cfg]`. It is only used here // to prevent false positives as there is currently no better way to detect if code was excluded by // a macro. See PR #6435 if_chain! { if let Some(match_snippet) = snippet_opt(cx, expr.span); if let Some(arm_snippet) = snippet_opt(cx, arms[0].span); if let Some(ex_snippet) = snippet_opt(cx, ex.span); let rest_snippet = match_snippet.replace(&arm_snippet, "").replace(&ex_snippet, ""); if rest_snippet.contains("=>"); then { // The code it self contains another thick arrow "=>" // -> Either another arm or a comment return; } } let matched_vars = ex.span; let bind_names = arms[0].pat.span; let match_body = peel_blocks(arms[0].body); let mut snippet_body = if match_body.span.from_expansion() { Sugg::hir_with_macro_callsite(cx, match_body, "..").to_string() } else { snippet_block(cx, match_body.span, "..", Some(expr.span)).to_string() }; // Do we need to add ';' to suggestion ? match match_body.kind { ExprKind::Block(block, _) => { // macro + expr_ty(body) == () if block.span.from_expansion() && cx.typeck_results().expr_ty(match_body).is_unit() { snippet_body.push(';'); } }, _ => { // expr_ty(body) == () if cx.typeck_results().expr_ty(match_body).is_unit() { snippet_body.push(';'); } }, } let mut applicability = Applicability::MaybeIncorrect; match arms[0].pat.kind { PatKind::Binding(..) | PatKind::Tuple(_, _) | PatKind::Struct(..) => { // If this match is in a local (`let`) stmt let (target_span, sugg) = if let Some(parent_let_node) = opt_parent_let(cx, ex) { ( parent_let_node.span, format!( "let {} = {};\n{}let {} = {};", snippet_with_applicability(cx, bind_names, "..", &mut applicability), snippet_with_applicability(cx, matched_vars, "..", &mut applicability), " ".repeat(indent_of(cx, expr.span).unwrap_or(0)), snippet_with_applicability(cx, parent_let_node.pat.span, "..", &mut applicability), snippet_body ), ) } else { // If we are in closure, we need curly braces around suggestion let mut indent = " ".repeat(indent_of(cx, ex.span).unwrap_or(0)); let (mut cbrace_start, mut cbrace_end) = ("".to_string(), "".to_string()); if let Some(parent_expr) = get_parent_expr(cx, expr) { if let ExprKind::Closure(..) = parent_expr.kind { cbrace_end = format!("\n{}}}", indent); // Fix body indent due to the closure indent = " ".repeat(indent_of(cx, bind_names).unwrap_or(0)); cbrace_start = format!("{{\n{}", indent); } } // If the parent is already an arm, and the body is another match statement, // we need curly braces around suggestion let parent_node_id = cx.tcx.hir().get_parent_node(expr.hir_id); if let Node::Arm(arm) = &cx.tcx.hir().get(parent_node_id) { if let ExprKind::Match(..) = arm.body.kind { cbrace_end = format!("\n{}}}", indent); // Fix body indent due to the match indent = " ".repeat(indent_of(cx, bind_names).unwrap_or(0)); cbrace_start = format!("{{\n{}", indent); } } ( expr.span, format!( "{}let {} = {};\n{}{}{}", cbrace_start, snippet_with_applicability(cx, bind_names, "..", &mut applicability), snippet_with_applicability(cx, matched_vars, "..", &mut applicability), indent, snippet_body, cbrace_end ), ) }; span_lint_and_sugg( cx, MATCH_SINGLE_BINDING, target_span, "this match could be written as a `let` statement", "consider using `let` statement", sugg, applicability, ); }, PatKind::Wild => { if ex.can_have_side_effects() { let indent = " ".repeat(indent_of(cx, expr.span).unwrap_or(0)); let sugg = format!( "{};\n{}{}", snippet_with_applicability(cx, ex.span, "..", &mut applicability), indent, snippet_body ); span_lint_and_sugg( cx, MATCH_SINGLE_BINDING, expr.span, "this match could be replaced by its scrutinee and body", "consider using the scrutinee and body instead", sugg, applicability, ); } else { span_lint_and_sugg( cx, MATCH_SINGLE_BINDING, expr.span, "this match could be replaced by its body itself", "consider using the match body instead", snippet_body, Applicability::MachineApplicable, ); } }, _ => (), } } /// Returns true if the `ex` match expression is in a local (`let`) statement fn opt_parent_let<'a>(cx: &LateContext<'a>, ex: &Expr<'a>) -> Option<&'a Local<'a>> { let map = &cx.tcx.hir(); if_chain! { if let Some(Node::Expr(parent_arm_expr)) = map.find(map.get_parent_node(ex.hir_id)); if let Some(Node::Local(parent_let_expr)) = map.find(map.get_parent_node(parent_arm_expr.hir_id)); then { return Some(parent_let_expr); } } None } /// Gets the ranges for each range pattern arm. Applies `ty` bounds for open ranges. fn all_ranges<'tcx>(cx: &LateContext<'tcx>, arms: &'tcx [Arm<'_>], ty: Ty<'tcx>) -> Vec> { arms.iter() .filter_map(|arm| { if let Arm { pat, guard: None, .. } = *arm { if let PatKind::Range(ref lhs, ref rhs, range_end) = pat.kind { let lhs_const = match lhs { Some(lhs) => constant(cx, cx.typeck_results(), lhs)?.0, None => miri_to_const(ty.numeric_min_val(cx.tcx)?)?, }; let rhs_const = match rhs { Some(rhs) => constant(cx, cx.typeck_results(), rhs)?.0, None => miri_to_const(ty.numeric_max_val(cx.tcx)?)?, }; let lhs_val = lhs_const.int_value(cx, ty)?; let rhs_val = rhs_const.int_value(cx, ty)?; let rhs_bound = match range_end { RangeEnd::Included => EndBound::Included(rhs_val), RangeEnd::Excluded => EndBound::Excluded(rhs_val), }; return Some(SpannedRange { span: pat.span, node: (lhs_val, rhs_bound), }); } if let PatKind::Lit(value) = pat.kind { let value = constant_full_int(cx, cx.typeck_results(), value)?; return Some(SpannedRange { span: pat.span, node: (value, EndBound::Included(value)), }); } } None }) .collect() } #[derive(Clone, Copy, Debug, Eq, PartialEq)] pub enum EndBound { Included(T), Excluded(T), } #[derive(Debug, Eq, PartialEq)] struct SpannedRange { pub span: Span, pub node: (T, EndBound), } // Checks if arm has the form `None => None` fn is_none_arm(cx: &LateContext<'_>, arm: &Arm<'_>) -> bool { matches!(arm.pat.kind, PatKind::Path(ref qpath) if is_lang_ctor(cx, qpath, OptionNone)) } // Checks if arm has the form `Some(ref v) => Some(v)` (checks for `ref` and `ref mut`) fn is_ref_some_arm(cx: &LateContext<'_>, arm: &Arm<'_>) -> Option { if_chain! { if let PatKind::TupleStruct(ref qpath, [first_pat, ..], _) = arm.pat.kind; if is_lang_ctor(cx, qpath, OptionSome); if let PatKind::Binding(rb, .., ident, _) = first_pat.kind; if rb == BindingAnnotation::Ref || rb == BindingAnnotation::RefMut; if let ExprKind::Call(e, args) = peel_blocks(arm.body).kind; if let ExprKind::Path(ref some_path) = e.kind; if is_lang_ctor(cx, some_path, OptionSome) && args.len() == 1; if let ExprKind::Path(QPath::Resolved(_, path2)) = args[0].kind; if path2.segments.len() == 1 && ident.name == path2.segments[0].ident.name; then { return Some(rb) } } None } fn has_multiple_ref_pats<'a, 'b, I>(pats: I) -> bool where 'b: 'a, I: Iterator>, { let mut ref_count = 0; for opt in pats.map(|pat| match pat.kind { PatKind::Ref(..) => Some(true), // &-patterns PatKind::Wild => Some(false), // an "anything" wildcard is also fine _ => None, // any other pattern is not fine }) { if let Some(inner) = opt { if inner { ref_count += 1; } } else { return false; } } ref_count > 1 } fn overlapping(ranges: &[SpannedRange]) -> Option<(&SpannedRange, &SpannedRange)> where T: Copy + Ord, { #[derive(Copy, Clone, Debug, Eq, Ord, PartialEq, PartialOrd)] enum BoundKind { EndExcluded, Start, EndIncluded, } #[derive(Copy, Clone, Debug, Eq, PartialEq)] struct RangeBound<'a, T>(T, BoundKind, &'a SpannedRange); impl<'a, T: Copy + Ord> PartialOrd for RangeBound<'a, T> { fn partial_cmp(&self, other: &Self) -> Option { Some(self.cmp(other)) } } impl<'a, T: Copy + Ord> Ord for RangeBound<'a, T> { fn cmp(&self, RangeBound(other_value, other_kind, _): &Self) -> Ordering { let RangeBound(self_value, self_kind, _) = *self; (self_value, self_kind).cmp(&(*other_value, *other_kind)) } } let mut values = Vec::with_capacity(2 * ranges.len()); for r @ SpannedRange { node: (start, end), .. } in ranges { values.push(RangeBound(*start, BoundKind::Start, r)); values.push(match end { EndBound::Excluded(val) => RangeBound(*val, BoundKind::EndExcluded, r), EndBound::Included(val) => RangeBound(*val, BoundKind::EndIncluded, r), }); } values.sort(); let mut started = vec![]; for RangeBound(_, kind, range) in values { match kind { BoundKind::Start => started.push(range), BoundKind::EndExcluded | BoundKind::EndIncluded => { let mut overlap = None; while let Some(last_started) = started.pop() { if last_started == range { break; } overlap = Some(last_started); } if let Some(first_overlapping) = overlap { return Some((range, first_overlapping)); } }, } } None } mod redundant_pattern_match { use super::REDUNDANT_PATTERN_MATCHING; use clippy_utils::diagnostics::span_lint_and_then; use clippy_utils::higher; use clippy_utils::source::snippet; use clippy_utils::sugg::Sugg; use clippy_utils::ty::{implements_trait, is_type_diagnostic_item, is_type_lang_item, match_type}; use clippy_utils::{is_lang_ctor, is_qpath_def_path, is_trait_method, paths}; use if_chain::if_chain; use rustc_ast::ast::LitKind; use rustc_data_structures::fx::FxHashSet; use rustc_errors::Applicability; use rustc_hir::LangItem::{OptionNone, OptionSome, PollPending, PollReady, ResultErr, ResultOk}; use rustc_hir::{ intravisit::{walk_expr, ErasedMap, NestedVisitorMap, Visitor}, Arm, Block, Expr, ExprKind, LangItem, MatchSource, Node, Pat, PatKind, QPath, UnOp, }; use rustc_lint::LateContext; use rustc_middle::ty::{self, subst::GenericArgKind, Ty}; use rustc_span::sym; pub fn check<'tcx>(cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) { if let Some(higher::IfLet { if_else, let_pat, let_expr, .. }) = higher::IfLet::hir(cx, expr) { find_sugg_for_if_let(cx, expr, let_pat, let_expr, "if", if_else.is_some()); } if let ExprKind::Match(op, arms, MatchSource::Normal) = &expr.kind { find_sugg_for_match(cx, expr, op, arms); } if let Some(higher::WhileLet { let_pat, let_expr, .. }) = higher::WhileLet::hir(expr) { find_sugg_for_if_let(cx, expr, let_pat, let_expr, "while", false); } } /// Checks if the drop order for a type matters. Some std types implement drop solely to /// deallocate memory. For these types, and composites containing them, changing the drop order /// won't result in any observable side effects. fn type_needs_ordered_drop<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> bool { type_needs_ordered_drop_inner(cx, ty, &mut FxHashSet::default()) } fn type_needs_ordered_drop_inner<'tcx>( cx: &LateContext<'tcx>, ty: Ty<'tcx>, seen: &mut FxHashSet>, ) -> bool { if !seen.insert(ty) { return false; } if !ty.needs_drop(cx.tcx, cx.param_env) { false } else if !cx .tcx .lang_items() .drop_trait() .map_or(false, |id| implements_trait(cx, ty, id, &[])) { // This type doesn't implement drop, so no side effects here. // Check if any component type has any. match ty.kind() { ty::Tuple(_) => ty.tuple_fields().any(|ty| type_needs_ordered_drop_inner(cx, ty, seen)), ty::Array(ty, _) => type_needs_ordered_drop_inner(cx, ty, seen), ty::Adt(adt, subs) => adt .all_fields() .map(|f| f.ty(cx.tcx, subs)) .any(|ty| type_needs_ordered_drop_inner(cx, ty, seen)), _ => true, } } // Check for std types which implement drop, but only for memory allocation. else if is_type_diagnostic_item(cx, ty, sym::Vec) || is_type_lang_item(cx, ty, LangItem::OwnedBox) || is_type_diagnostic_item(cx, ty, sym::Rc) || is_type_diagnostic_item(cx, ty, sym::Arc) || is_type_diagnostic_item(cx, ty, sym::cstring_type) || is_type_diagnostic_item(cx, ty, sym::BTreeMap) || is_type_diagnostic_item(cx, ty, sym::LinkedList) || match_type(cx, ty, &paths::WEAK_RC) || match_type(cx, ty, &paths::WEAK_ARC) { // Check all of the generic arguments. if let ty::Adt(_, subs) = ty.kind() { subs.types().any(|ty| type_needs_ordered_drop_inner(cx, ty, seen)) } else { true } } else { true } } // Extract the generic arguments out of a type fn try_get_generic_ty(ty: Ty<'_>, index: usize) -> Option> { if_chain! { if let ty::Adt(_, subs) = ty.kind(); if let Some(sub) = subs.get(index); if let GenericArgKind::Type(sub_ty) = sub.unpack(); then { Some(sub_ty) } else { None } } } // Checks if there are any temporaries created in the given expression for which drop order // matters. fn temporaries_need_ordered_drop<'tcx>(cx: &LateContext<'tcx>, expr: &'tcx Expr<'tcx>) -> bool { struct V<'a, 'tcx> { cx: &'a LateContext<'tcx>, res: bool, } impl<'a, 'tcx> Visitor<'tcx> for V<'a, 'tcx> { type Map = ErasedMap<'tcx>; fn nested_visit_map(&mut self) -> NestedVisitorMap { NestedVisitorMap::None } fn visit_expr(&mut self, expr: &'tcx Expr<'tcx>) { match expr.kind { // Taking the reference of a value leaves a temporary // e.g. In `&String::new()` the string is a temporary value. // Remaining fields are temporary values // e.g. In `(String::new(), 0).1` the string is a temporary value. ExprKind::AddrOf(_, _, expr) | ExprKind::Field(expr, _) => { if !matches!(expr.kind, ExprKind::Path(_)) { if type_needs_ordered_drop(self.cx, self.cx.typeck_results().expr_ty(expr)) { self.res = true; } else { self.visit_expr(expr); } } }, // the base type is alway taken by reference. // e.g. In `(vec![0])[0]` the vector is a temporary value. ExprKind::Index(base, index) => { if !matches!(base.kind, ExprKind::Path(_)) { if type_needs_ordered_drop(self.cx, self.cx.typeck_results().expr_ty(base)) { self.res = true; } else { self.visit_expr(base); } } self.visit_expr(index); }, // Method calls can take self by reference. // e.g. In `String::new().len()` the string is a temporary value. ExprKind::MethodCall(_, _, [self_arg, args @ ..], _) => { if !matches!(self_arg.kind, ExprKind::Path(_)) { let self_by_ref = self .cx .typeck_results() .type_dependent_def_id(expr.hir_id) .map_or(false, |id| self.cx.tcx.fn_sig(id).skip_binder().inputs()[0].is_ref()); if self_by_ref && type_needs_ordered_drop(self.cx, self.cx.typeck_results().expr_ty(self_arg)) { self.res = true; } else { self.visit_expr(self_arg); } } args.iter().for_each(|arg| self.visit_expr(arg)); }, // Either explicitly drops values, or changes control flow. ExprKind::DropTemps(_) | ExprKind::Ret(_) | ExprKind::Break(..) | ExprKind::Yield(..) | ExprKind::Block(Block { expr: None, .. }, _) | ExprKind::Loop(..) => (), // Only consider the final expression. ExprKind::Block(Block { expr: Some(expr), .. }, _) => self.visit_expr(expr), _ => walk_expr(self, expr), } } } let mut v = V { cx, res: false }; v.visit_expr(expr); v.res } fn find_sugg_for_if_let<'tcx>( cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>, let_pat: &Pat<'_>, let_expr: &'tcx Expr<'_>, keyword: &'static str, has_else: bool, ) { // also look inside refs let mut kind = &let_pat.kind; // if we have &None for example, peel it so we can detect "if let None = x" if let PatKind::Ref(inner, _mutability) = kind { kind = &inner.kind; } let op_ty = cx.typeck_results().expr_ty(let_expr); // Determine which function should be used, and the type contained by the corresponding // variant. let (good_method, inner_ty) = match kind { PatKind::TupleStruct(ref path, [sub_pat], _) => { if let PatKind::Wild = sub_pat.kind { if is_lang_ctor(cx, path, ResultOk) { ("is_ok()", try_get_generic_ty(op_ty, 0).unwrap_or(op_ty)) } else if is_lang_ctor(cx, path, ResultErr) { ("is_err()", try_get_generic_ty(op_ty, 1).unwrap_or(op_ty)) } else if is_lang_ctor(cx, path, OptionSome) { ("is_some()", op_ty) } else if is_lang_ctor(cx, path, PollReady) { ("is_ready()", op_ty) } else if is_qpath_def_path(cx, path, sub_pat.hir_id, &paths::IPADDR_V4) { ("is_ipv4()", op_ty) } else if is_qpath_def_path(cx, path, sub_pat.hir_id, &paths::IPADDR_V6) { ("is_ipv6()", op_ty) } else { return; } } else { return; } }, PatKind::Path(ref path) => { let method = if is_lang_ctor(cx, path, OptionNone) { "is_none()" } else if is_lang_ctor(cx, path, PollPending) { "is_pending()" } else { return; }; // `None` and `Pending` don't have an inner type. (method, cx.tcx.types.unit) }, _ => return, }; // If this is the last expression in a block or there is an else clause then the whole // type needs to be considered, not just the inner type of the branch being matched on. // Note the last expression in a block is dropped after all local bindings. let check_ty = if has_else || (keyword == "if" && matches!(cx.tcx.hir().parent_iter(expr.hir_id).next(), Some((_, Node::Block(..))))) { op_ty } else { inner_ty }; // All temporaries created in the scrutinee expression are dropped at the same time as the // scrutinee would be, so they have to be considered as well. // e.g. in `if let Some(x) = foo.lock().unwrap().baz.as_ref() { .. }` the lock will be held // for the duration if body. let needs_drop = type_needs_ordered_drop(cx, check_ty) || temporaries_need_ordered_drop(cx, let_expr); // check that `while_let_on_iterator` lint does not trigger if_chain! { if keyword == "while"; if let ExprKind::MethodCall(method_path, _, _, _) = let_expr.kind; if method_path.ident.name == sym::next; if is_trait_method(cx, let_expr, sym::Iterator); then { return; } } let result_expr = match &let_expr.kind { ExprKind::AddrOf(_, _, borrowed) => borrowed, ExprKind::Unary(UnOp::Deref, deref) => deref, _ => let_expr, }; span_lint_and_then( cx, REDUNDANT_PATTERN_MATCHING, let_pat.span, &format!("redundant pattern matching, consider using `{}`", good_method), |diag| { // if/while let ... = ... { ... } // ^^^^^^^^^^^^^^^^^^^^^^^^^^^ let expr_span = expr.span; // if/while let ... = ... { ... } // ^^^ let op_span = result_expr.span.source_callsite(); // if/while let ... = ... { ... } // ^^^^^^^^^^^^^^^^^^^ let span = expr_span.until(op_span.shrink_to_hi()); let app = if needs_drop { Applicability::MaybeIncorrect } else { Applicability::MachineApplicable }; let sugg = Sugg::hir_with_macro_callsite(cx, result_expr, "_") .maybe_par() .to_string(); diag.span_suggestion(span, "try this", format!("{} {}.{}", keyword, sugg, good_method), app); if needs_drop { diag.note("this will change drop order of the result, as well as all temporaries"); diag.note("add `#[allow(clippy::redundant_pattern_matching)]` if this is important"); } }, ); } fn find_sugg_for_match<'tcx>(cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>, op: &Expr<'_>, arms: &[Arm<'_>]) { if arms.len() == 2 { let node_pair = (&arms[0].pat.kind, &arms[1].pat.kind); let found_good_method = match node_pair { ( PatKind::TupleStruct(ref path_left, patterns_left, _), PatKind::TupleStruct(ref path_right, patterns_right, _), ) if patterns_left.len() == 1 && patterns_right.len() == 1 => { if let (PatKind::Wild, PatKind::Wild) = (&patterns_left[0].kind, &patterns_right[0].kind) { find_good_method_for_match( cx, arms, path_left, path_right, &paths::RESULT_OK, &paths::RESULT_ERR, "is_ok()", "is_err()", ) .or_else(|| { find_good_method_for_match( cx, arms, path_left, path_right, &paths::IPADDR_V4, &paths::IPADDR_V6, "is_ipv4()", "is_ipv6()", ) }) } else { None } }, (PatKind::TupleStruct(ref path_left, patterns, _), PatKind::Path(ref path_right)) | (PatKind::Path(ref path_left), PatKind::TupleStruct(ref path_right, patterns, _)) if patterns.len() == 1 => { if let PatKind::Wild = patterns[0].kind { find_good_method_for_match( cx, arms, path_left, path_right, &paths::OPTION_SOME, &paths::OPTION_NONE, "is_some()", "is_none()", ) .or_else(|| { find_good_method_for_match( cx, arms, path_left, path_right, &paths::POLL_READY, &paths::POLL_PENDING, "is_ready()", "is_pending()", ) }) } else { None } }, _ => None, }; if let Some(good_method) = found_good_method { let span = expr.span.to(op.span); let result_expr = match &op.kind { ExprKind::AddrOf(_, _, borrowed) => borrowed, _ => op, }; span_lint_and_then( cx, REDUNDANT_PATTERN_MATCHING, expr.span, &format!("redundant pattern matching, consider using `{}`", good_method), |diag| { diag.span_suggestion( span, "try this", format!("{}.{}", snippet(cx, result_expr.span, "_"), good_method), Applicability::MaybeIncorrect, // snippet ); }, ); } } } #[allow(clippy::too_many_arguments)] fn find_good_method_for_match<'a>( cx: &LateContext<'_>, arms: &[Arm<'_>], path_left: &QPath<'_>, path_right: &QPath<'_>, expected_left: &[&str], expected_right: &[&str], should_be_left: &'a str, should_be_right: &'a str, ) -> Option<&'a str> { let body_node_pair = if is_qpath_def_path(cx, path_left, arms[0].pat.hir_id, expected_left) && is_qpath_def_path(cx, path_right, arms[1].pat.hir_id, expected_right) { (&(*arms[0].body).kind, &(*arms[1].body).kind) } else if is_qpath_def_path(cx, path_right, arms[1].pat.hir_id, expected_left) && is_qpath_def_path(cx, path_left, arms[0].pat.hir_id, expected_right) { (&(*arms[1].body).kind, &(*arms[0].body).kind) } else { return None; }; match body_node_pair { (ExprKind::Lit(ref lit_left), ExprKind::Lit(ref lit_right)) => match (&lit_left.node, &lit_right.node) { (LitKind::Bool(true), LitKind::Bool(false)) => Some(should_be_left), (LitKind::Bool(false), LitKind::Bool(true)) => Some(should_be_right), _ => None, }, _ => None, } } } #[test] fn test_overlapping() { use rustc_span::source_map::DUMMY_SP; let sp = |s, e| SpannedRange { span: DUMMY_SP, node: (s, e), }; assert_eq!(None, overlapping::(&[])); assert_eq!(None, overlapping(&[sp(1, EndBound::Included(4))])); assert_eq!( None, overlapping(&[sp(1, EndBound::Included(4)), sp(5, EndBound::Included(6))]) ); assert_eq!( None, overlapping(&[ sp(1, EndBound::Included(4)), sp(5, EndBound::Included(6)), sp(10, EndBound::Included(11)) ],) ); assert_eq!( Some((&sp(1, EndBound::Included(4)), &sp(3, EndBound::Included(6)))), overlapping(&[sp(1, EndBound::Included(4)), sp(3, EndBound::Included(6))]) ); assert_eq!( Some((&sp(5, EndBound::Included(6)), &sp(6, EndBound::Included(11)))), overlapping(&[ sp(1, EndBound::Included(4)), sp(5, EndBound::Included(6)), sp(6, EndBound::Included(11)) ],) ); } /// Implementation of `MATCH_SAME_ARMS`. fn lint_match_arms<'tcx>(cx: &LateContext<'tcx>, expr: &Expr<'_>) { if let ExprKind::Match(_, arms, MatchSource::Normal) = expr.kind { let hash = |&(_, arm): &(usize, &Arm<'_>)| -> u64 { let mut h = SpanlessHash::new(cx); h.hash_expr(arm.body); h.finish() }; let eq = |&(lindex, lhs): &(usize, &Arm<'_>), &(rindex, rhs): &(usize, &Arm<'_>)| -> bool { let min_index = usize::min(lindex, rindex); let max_index = usize::max(lindex, rindex); let mut local_map: HirIdMap = HirIdMap::default(); let eq_fallback = |a: &Expr<'_>, b: &Expr<'_>| { if_chain! { if let Some(a_id) = path_to_local(a); if let Some(b_id) = path_to_local(b); let entry = match local_map.entry(a_id) { Entry::Vacant(entry) => entry, // check if using the same bindings as before Entry::Occupied(entry) => return *entry.get() == b_id, }; // the names technically don't have to match; this makes the lint more conservative if cx.tcx.hir().name(a_id) == cx.tcx.hir().name(b_id); if TyS::same_type(cx.typeck_results().expr_ty(a), cx.typeck_results().expr_ty(b)); if pat_contains_local(lhs.pat, a_id); if pat_contains_local(rhs.pat, b_id); then { entry.insert(b_id); true } else { false } } }; // Arms with a guard are ignored, those can’t always be merged together // This is also the case for arms in-between each there is an arm with a guard (min_index..=max_index).all(|index| arms[index].guard.is_none()) && SpanlessEq::new(cx) .expr_fallback(eq_fallback) .eq_expr(lhs.body, rhs.body) // these checks could be removed to allow unused bindings && bindings_eq(lhs.pat, local_map.keys().copied().collect()) && bindings_eq(rhs.pat, local_map.values().copied().collect()) }; let indexed_arms: Vec<(usize, &Arm<'_>)> = arms.iter().enumerate().collect(); for (&(_, i), &(_, j)) in search_same(&indexed_arms, hash, eq) { span_lint_and_then( cx, MATCH_SAME_ARMS, j.body.span, "this `match` has identical arm bodies", |diag| { diag.span_note(i.body.span, "same as this"); // Note: this does not use `span_suggestion` on purpose: // there is no clean way // to remove the other arm. Building a span and suggest to replace it to "" // makes an even more confusing error message. Also in order not to make up a // span for the whole pattern, the suggestion is only shown when there is only // one pattern. The user should know about `|` if they are already using it… let lhs = snippet(cx, i.pat.span, ""); let rhs = snippet(cx, j.pat.span, ""); if let PatKind::Wild = j.pat.kind { // if the last arm is _, then i could be integrated into _ // note that i.pat cannot be _, because that would mean that we're // hiding all the subsequent arms, and rust won't compile diag.span_note( i.body.span, &format!( "`{}` has the same arm body as the `_` wildcard, consider removing it", lhs ), ); } else { diag.span_help(i.pat.span, &format!("consider refactoring into `{} | {}`", lhs, rhs,)) .help("...or consider changing the match arm bodies"); } }, ); } } } fn pat_contains_local(pat: &Pat<'_>, id: HirId) -> bool { let mut result = false; pat.walk_short(|p| { result |= matches!(p.kind, PatKind::Binding(_, binding_id, ..) if binding_id == id); !result }); result } /// Returns true if all the bindings in the `Pat` are in `ids` and vice versa fn bindings_eq(pat: &Pat<'_>, mut ids: HirIdSet) -> bool { let mut result = true; pat.each_binding_or_first(&mut |_, id, _, _| result &= ids.remove(&id)); result && ids.is_empty() }