#![allow(print_stdout, use_debug)] //! checks for attributes use rustc::lint::*; use rustc::hir; use rustc::hir::print; use syntax::ast::Attribute; use crate::utils::get_attr; /// **What it does:** Dumps every ast/hir node which has the `#[clippy_dump]` /// attribute /// /// **Example:** /// ```rust /// #[clippy_dump] /// extern crate foo; /// ``` /// /// prints /// /// ``` /// item `foo` /// visibility inherited from outer item /// extern crate dylib source: "/path/to/foo.so" /// ``` declare_clippy_lint! { pub DEEP_CODE_INSPECTION, internal_warn, "helper to dump info about code" } pub struct Pass; impl LintPass for Pass { fn get_lints(&self) -> LintArray { lint_array!(DEEP_CODE_INSPECTION) } } impl<'a, 'tcx> LateLintPass<'a, 'tcx> for Pass { fn check_item(&mut self, cx: &LateContext<'a, 'tcx>, item: &'tcx hir::Item) { if !has_attr(&item.attrs) { return; } print_item(cx, item); } fn check_impl_item(&mut self, cx: &LateContext<'a, 'tcx>, item: &'tcx hir::ImplItem) { if !has_attr(&item.attrs) { return; } println!("impl item `{}`", item.name); match item.vis { hir::Visibility::Public => println!("public"), hir::Visibility::Crate(_) => println!("visible crate wide"), hir::Visibility::Restricted { ref path, .. } => println!( "visible in module `{}`", print::to_string(print::NO_ANN, |s| s.print_path(path, false)) ), hir::Visibility::Inherited => println!("visibility inherited from outer item"), } if item.defaultness.is_default() { println!("default"); } match item.node { hir::ImplItemKind::Const(_, body_id) => { println!("associated constant"); print_expr(cx, &cx.tcx.hir.body(body_id).value, 1); }, hir::ImplItemKind::Method(..) => println!("method"), hir::ImplItemKind::Type(_) => println!("associated type"), } } // fn check_trait_item(&mut self, cx: &LateContext<'a, 'tcx>, item: &'tcx // hir::TraitItem) { // if !has_attr(&item.attrs) { // return; // } // } // // fn check_variant(&mut self, cx: &LateContext<'a, 'tcx>, var: &'tcx // hir::Variant, _: // &hir::Generics) { // if !has_attr(&var.node.attrs) { // return; // } // } // // fn check_struct_field(&mut self, cx: &LateContext<'a, 'tcx>, field: &'tcx // hir::StructField) { // if !has_attr(&field.attrs) { // return; // } // } // fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, expr: &'tcx hir::Expr) { if !has_attr(&expr.attrs) { return; } print_expr(cx, expr, 0); } fn check_arm(&mut self, cx: &LateContext<'a, 'tcx>, arm: &'tcx hir::Arm) { if !has_attr(&arm.attrs) { return; } for pat in &arm.pats { print_pat(cx, pat, 1); } if let Some(ref guard) = arm.guard { println!("guard:"); print_expr(cx, guard, 1); } println!("body:"); print_expr(cx, &arm.body, 1); } fn check_stmt(&mut self, cx: &LateContext<'a, 'tcx>, stmt: &'tcx hir::Stmt) { if !has_attr(stmt.node.attrs()) { return; } match stmt.node { hir::StmtDecl(ref decl, _) => print_decl(cx, decl), hir::StmtExpr(ref e, _) | hir::StmtSemi(ref e, _) => print_expr(cx, e, 0), } } // fn check_foreign_item(&mut self, cx: &LateContext<'a, 'tcx>, item: &'tcx // hir::ForeignItem) { // if !has_attr(&item.attrs) { // return; // } // } // } fn has_attr(attrs: &[Attribute]) -> bool { get_attr(attrs, "dump").count() > 0 } fn print_decl(cx: &LateContext, decl: &hir::Decl) { match decl.node { hir::DeclLocal(ref local) => { println!("local variable of type {}", cx.tables.node_id_to_type(local.hir_id)); println!("pattern:"); print_pat(cx, &local.pat, 0); if let Some(ref e) = local.init { println!("init expression:"); print_expr(cx, e, 0); } }, hir::DeclItem(_) => println!("item decl"), } } fn print_expr(cx: &LateContext, expr: &hir::Expr, indent: usize) { let ind = " ".repeat(indent); println!("{}+", ind); println!("{}ty: {}", ind, cx.tables.expr_ty(expr)); println!("{}adjustments: {:?}", ind, cx.tables.adjustments().get(expr.hir_id)); match expr.node { hir::ExprBox(ref e) => { println!("{}Box", ind); print_expr(cx, e, indent + 1); }, hir::ExprArray(ref v) => { println!("{}Array", ind); for e in v { print_expr(cx, e, indent + 1); } }, hir::ExprCall(ref func, ref args) => { println!("{}Call", ind); println!("{}function:", ind); print_expr(cx, func, indent + 1); println!("{}arguments:", ind); for arg in args { print_expr(cx, arg, indent + 1); } }, hir::ExprMethodCall(ref path, _, ref args) => { println!("{}MethodCall", ind); println!("{}method name: {}", ind, path.name); for arg in args { print_expr(cx, arg, indent + 1); } }, hir::ExprTup(ref v) => { println!("{}Tup", ind); for e in v { print_expr(cx, e, indent + 1); } }, hir::ExprBinary(op, ref lhs, ref rhs) => { println!("{}Binary", ind); println!("{}op: {:?}", ind, op.node); println!("{}lhs:", ind); print_expr(cx, lhs, indent + 1); println!("{}rhs:", ind); print_expr(cx, rhs, indent + 1); }, hir::ExprUnary(op, ref inner) => { println!("{}Unary", ind); println!("{}op: {:?}", ind, op); print_expr(cx, inner, indent + 1); }, hir::ExprLit(ref lit) => { println!("{}Lit", ind); println!("{}{:?}", ind, lit); }, hir::ExprCast(ref e, ref target) => { println!("{}Cast", ind); print_expr(cx, e, indent + 1); println!("{}target type: {:?}", ind, target); }, hir::ExprType(ref e, ref target) => { println!("{}Type", ind); print_expr(cx, e, indent + 1); println!("{}target type: {:?}", ind, target); }, hir::ExprIf(ref e, _, ref els) => { println!("{}If", ind); println!("{}condition:", ind); print_expr(cx, e, indent + 1); if let Some(ref els) = *els { println!("{}else:", ind); print_expr(cx, els, indent + 1); } }, hir::ExprWhile(ref cond, _, _) => { println!("{}While", ind); println!("{}condition:", ind); print_expr(cx, cond, indent + 1); }, hir::ExprLoop(..) => { println!("{}Loop", ind); }, hir::ExprMatch(ref cond, _, ref source) => { println!("{}Match", ind); println!("{}condition:", ind); print_expr(cx, cond, indent + 1); println!("{}source: {:?}", ind, source); }, hir::ExprClosure(ref clause, _, _, _, _) => { println!("{}Closure", ind); println!("{}clause: {:?}", ind, clause); }, hir::ExprYield(ref sub) => { println!("{}Yield", ind); print_expr(cx, sub, indent + 1); }, hir::ExprBlock(_, _) => { println!("{}Block", ind); }, hir::ExprAssign(ref lhs, ref rhs) => { println!("{}Assign", ind); println!("{}lhs:", ind); print_expr(cx, lhs, indent + 1); println!("{}rhs:", ind); print_expr(cx, rhs, indent + 1); }, hir::ExprAssignOp(ref binop, ref lhs, ref rhs) => { println!("{}AssignOp", ind); println!("{}op: {:?}", ind, binop.node); println!("{}lhs:", ind); print_expr(cx, lhs, indent + 1); println!("{}rhs:", ind); print_expr(cx, rhs, indent + 1); }, hir::ExprField(ref e, ref ident) => { println!("{}Field", ind); println!("{}field name: {}", ind, ident.name); println!("{}struct expr:", ind); print_expr(cx, e, indent + 1); }, hir::ExprIndex(ref arr, ref idx) => { println!("{}Index", ind); println!("{}array expr:", ind); print_expr(cx, arr, indent + 1); println!("{}index expr:", ind); print_expr(cx, idx, indent + 1); }, hir::ExprPath(hir::QPath::Resolved(ref ty, ref path)) => { println!("{}Resolved Path, {:?}", ind, ty); println!("{}path: {:?}", ind, path); }, hir::ExprPath(hir::QPath::TypeRelative(ref ty, ref seg)) => { println!("{}Relative Path, {:?}", ind, ty); println!("{}seg: {:?}", ind, seg); }, hir::ExprAddrOf(ref muta, ref e) => { println!("{}AddrOf", ind); println!("mutability: {:?}", muta); print_expr(cx, e, indent + 1); }, hir::ExprBreak(_, ref e) => { println!("{}Break", ind); if let Some(ref e) = *e { print_expr(cx, e, indent + 1); } }, hir::ExprContinue(_) => println!("{}Again", ind), hir::ExprRet(ref e) => { println!("{}Ret", ind); if let Some(ref e) = *e { print_expr(cx, e, indent + 1); } }, hir::ExprInlineAsm(_, ref input, ref output) => { println!("{}InlineAsm", ind); println!("{}inputs:", ind); for e in input { print_expr(cx, e, indent + 1); } println!("{}outputs:", ind); for e in output { print_expr(cx, e, indent + 1); } }, hir::ExprStruct(ref path, ref fields, ref base) => { println!("{}Struct", ind); println!("{}path: {:?}", ind, path); for field in fields { println!("{}field \"{}\":", ind, field.ident.name); print_expr(cx, &field.expr, indent + 1); } if let Some(ref base) = *base { println!("{}base:", ind); print_expr(cx, base, indent + 1); } }, hir::ExprRepeat(ref val, ref anon_const) => { println!("{}Repeat", ind); println!("{}value:", ind); print_expr(cx, val, indent + 1); println!("{}repeat count:", ind); print_expr(cx, &cx.tcx.hir.body(anon_const.body).value, indent + 1); }, } } fn print_item(cx: &LateContext, item: &hir::Item) { let did = cx.tcx.hir.local_def_id(item.id); println!("item `{}`", item.name); match item.vis { hir::Visibility::Public => println!("public"), hir::Visibility::Crate(_) => println!("visible crate wide"), hir::Visibility::Restricted { ref path, .. } => println!( "visible in module `{}`", print::to_string(print::NO_ANN, |s| s.print_path(path, false)) ), hir::Visibility::Inherited => println!("visibility inherited from outer item"), } match item.node { hir::ItemExternCrate(ref _renamed_from) => { let def_id = cx.tcx.hir.local_def_id(item.id); if let Some(crate_id) = cx.tcx.extern_mod_stmt_cnum(def_id) { let source = cx.tcx.used_crate_source(crate_id); if let Some(ref src) = source.dylib { println!("extern crate dylib source: {:?}", src.0); } if let Some(ref src) = source.rlib { println!("extern crate rlib source: {:?}", src.0); } } else { println!("weird extern crate without a crate id"); } }, hir::ItemUse(ref path, ref kind) => println!("{:?}, {:?}", path, kind), hir::ItemStatic(..) => println!("static item of type {:#?}", cx.tcx.type_of(did)), hir::ItemConst(..) => println!("const item of type {:#?}", cx.tcx.type_of(did)), hir::ItemFn(..) => { let item_ty = cx.tcx.type_of(did); println!("function of type {:#?}", item_ty); }, hir::ItemMod(..) => println!("module"), hir::ItemForeignMod(ref fm) => println!("foreign module with abi: {}", fm.abi), hir::ItemGlobalAsm(ref asm) => println!("global asm: {:?}", asm), hir::ItemTy(..) => { println!("type alias for {:?}", cx.tcx.type_of(did)); }, hir::ItemExistential(..) => { println!("existential type with real type {:?}", cx.tcx.type_of(did)); }, hir::ItemEnum(..) => { println!("enum definition of type {:?}", cx.tcx.type_of(did)); }, hir::ItemStruct(..) => { println!("struct definition of type {:?}", cx.tcx.type_of(did)); }, hir::ItemUnion(..) => { println!("union definition of type {:?}", cx.tcx.type_of(did)); }, hir::ItemTrait(..) => { println!("trait decl"); if cx.tcx.trait_is_auto(did) { println!("trait is auto"); } else { println!("trait is not auto"); } }, hir::ItemTraitAlias(..) => { println!("trait alias"); } hir::ItemImpl(_, _, _, _, Some(ref _trait_ref), _, _) => { println!("trait impl"); }, hir::ItemImpl(_, _, _, _, None, _, _) => { println!("impl"); }, } } fn print_pat(cx: &LateContext, pat: &hir::Pat, indent: usize) { let ind = " ".repeat(indent); println!("{}+", ind); match pat.node { hir::PatKind::Wild => println!("{}Wild", ind), hir::PatKind::Binding(ref mode, _, ref name, ref inner) => { println!("{}Binding", ind); println!("{}mode: {:?}", ind, mode); println!("{}name: {}", ind, name.node); if let Some(ref inner) = *inner { println!("{}inner:", ind); print_pat(cx, inner, indent + 1); } }, hir::PatKind::Struct(ref path, ref fields, ignore) => { println!("{}Struct", ind); println!( "{}name: {}", ind, print::to_string(print::NO_ANN, |s| s.print_qpath(path, false)) ); println!("{}ignore leftover fields: {}", ind, ignore); println!("{}fields:", ind); for field in fields { println!("{} field name: {}", ind, field.node.ident.name); if field.node.is_shorthand { println!("{} in shorthand notation", ind); } print_pat(cx, &field.node.pat, indent + 1); } }, hir::PatKind::TupleStruct(ref path, ref fields, opt_dots_position) => { println!("{}TupleStruct", ind); println!( "{}path: {}", ind, print::to_string(print::NO_ANN, |s| s.print_qpath(path, false)) ); if let Some(dot_position) = opt_dots_position { println!("{}dot position: {}", ind, dot_position); } for field in fields { print_pat(cx, field, indent + 1); } }, hir::PatKind::Path(hir::QPath::Resolved(ref ty, ref path)) => { println!("{}Resolved Path, {:?}", ind, ty); println!("{}path: {:?}", ind, path); }, hir::PatKind::Path(hir::QPath::TypeRelative(ref ty, ref seg)) => { println!("{}Relative Path, {:?}", ind, ty); println!("{}seg: {:?}", ind, seg); }, hir::PatKind::Tuple(ref pats, opt_dots_position) => { println!("{}Tuple", ind); if let Some(dot_position) = opt_dots_position { println!("{}dot position: {}", ind, dot_position); } for field in pats { print_pat(cx, field, indent + 1); } }, hir::PatKind::Box(ref inner) => { println!("{}Box", ind); print_pat(cx, inner, indent + 1); }, hir::PatKind::Ref(ref inner, ref muta) => { println!("{}Ref", ind); println!("{}mutability: {:?}", ind, muta); print_pat(cx, inner, indent + 1); }, hir::PatKind::Lit(ref e) => { println!("{}Lit", ind); print_expr(cx, e, indent + 1); }, hir::PatKind::Range(ref l, ref r, ref range_end) => { println!("{}Range", ind); print_expr(cx, l, indent + 1); print_expr(cx, r, indent + 1); match *range_end { hir::RangeEnd::Included => println!("{} end included", ind), hir::RangeEnd::Excluded => println!("{} end excluded", ind), } }, hir::PatKind::Slice(ref first_pats, ref range, ref last_pats) => { println!("{}Slice [a, b, ..i, y, z]", ind); println!("[a, b]:"); for pat in first_pats { print_pat(cx, pat, indent + 1); } println!("i:"); if let Some(ref pat) = *range { print_pat(cx, pat, indent + 1); } println!("[y, z]:"); for pat in last_pats { print_pat(cx, pat, indent + 1); } }, } }