use crate::utils::{ constants, snippet, snippet_opt, span_help_and_lint, span_lint, span_lint_and_sugg, span_lint_and_then, }; use if_chain::if_chain; use rustc::lint::{in_external_macro, EarlyContext, EarlyLintPass, LintArray, LintContext, LintPass}; use rustc::{declare_lint_pass, declare_tool_lint}; use rustc_data_structures::fx::FxHashMap; use rustc_errors::Applicability; use syntax::ast::*; use syntax::source_map::Span; use syntax::visit::{walk_expr, FnKind, Visitor}; declare_clippy_lint! { /// **What it does:** Checks for structure field patterns bound to wildcards. /// /// **Why is this bad?** Using `..` instead is shorter and leaves the focus on /// the fields that are actually bound. /// /// **Known problems:** None. /// /// **Example:** /// ```ignore /// let { a: _, b: ref b, c: _ } = .. /// ``` pub UNNEEDED_FIELD_PATTERN, style, "struct fields bound to a wildcard instead of using `..`" } declare_clippy_lint! { /// **What it does:** Checks for function arguments having the similar names /// differing by an underscore. /// /// **Why is this bad?** It affects code readability. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// fn foo(a: i32, _a: i32) {} /// ``` pub DUPLICATE_UNDERSCORE_ARGUMENT, style, "function arguments having names which only differ by an underscore" } declare_clippy_lint! { /// **What it does:** Detects closures called in the same expression where they /// are defined. /// /// **Why is this bad?** It is unnecessarily adding to the expression's /// complexity. /// /// **Known problems:** None. /// /// **Example:** /// ```rust,ignore /// (|| 42)() /// ``` pub REDUNDANT_CLOSURE_CALL, complexity, "throwaway closures called in the expression they are defined" } declare_clippy_lint! { /// **What it does:** Detects expressions of the form `--x`. /// /// **Why is this bad?** It can mislead C/C++ programmers to think `x` was /// decremented. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// let mut x = 3; /// --x; /// ``` pub DOUBLE_NEG, style, "`--x`, which is a double negation of `x` and not a pre-decrement as in C/C++" } declare_clippy_lint! { /// **What it does:** Warns on hexadecimal literals with mixed-case letter /// digits. /// /// **Why is this bad?** It looks confusing. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// let y = 0x1a9BAcD; /// ``` pub MIXED_CASE_HEX_LITERALS, style, "hex literals whose letter digits are not consistently upper- or lowercased" } declare_clippy_lint! { /// **What it does:** Warns if literal suffixes are not separated by an /// underscore. /// /// **Why is this bad?** It is much less readable. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// let y = 123832i32; /// ``` pub UNSEPARATED_LITERAL_SUFFIX, pedantic, "literals whose suffix is not separated by an underscore" } declare_clippy_lint! { /// **What it does:** Warns if an integral constant literal starts with `0`. /// /// **Why is this bad?** In some languages (including the infamous C language /// and most of its /// family), this marks an octal constant. In Rust however, this is a decimal /// constant. This could /// be confusing for both the writer and a reader of the constant. /// /// **Known problems:** None. /// /// **Example:** /// /// In Rust: /// ```rust /// fn main() { /// let a = 0123; /// println!("{}", a); /// } /// ``` /// /// prints `123`, while in C: /// /// ```c /// #include /// /// int main() { /// int a = 0123; /// printf("%d\n", a); /// } /// ``` /// /// prints `83` (as `83 == 0o123` while `123 == 0o173`). pub ZERO_PREFIXED_LITERAL, complexity, "integer literals starting with `0`" } declare_clippy_lint! { /// **What it does:** Warns if a generic shadows a built-in type. /// /// **Why is this bad?** This gives surprising type errors. /// /// **Known problems:** None. /// /// **Example:** /// /// ```ignore /// impl Foo { /// fn impl_func(&self) -> u32 { /// 42 /// } /// } /// ``` pub BUILTIN_TYPE_SHADOW, style, "shadowing a builtin type" } declare_lint_pass!(MiscEarlyLints => [ UNNEEDED_FIELD_PATTERN, DUPLICATE_UNDERSCORE_ARGUMENT, REDUNDANT_CLOSURE_CALL, DOUBLE_NEG, MIXED_CASE_HEX_LITERALS, UNSEPARATED_LITERAL_SUFFIX, ZERO_PREFIXED_LITERAL, BUILTIN_TYPE_SHADOW ]); // Used to find `return` statements or equivalents e.g., `?` struct ReturnVisitor { found_return: bool, } impl ReturnVisitor { fn new() -> Self { Self { found_return: false } } } impl<'ast> Visitor<'ast> for ReturnVisitor { fn visit_expr(&mut self, ex: &'ast Expr) { if let ExprKind::Ret(_) = ex.node { self.found_return = true; } else if let ExprKind::Try(_) = ex.node { self.found_return = true; } walk_expr(self, ex) } } impl EarlyLintPass for MiscEarlyLints { fn check_generics(&mut self, cx: &EarlyContext<'_>, gen: &Generics) { for param in &gen.params { if let GenericParamKind::Type { .. } = param.kind { let name = param.ident.as_str(); if constants::BUILTIN_TYPES.contains(&&*name) { span_lint( cx, BUILTIN_TYPE_SHADOW, param.ident.span, &format!("This generic shadows the built-in type `{}`", name), ); } } } } fn check_pat(&mut self, cx: &EarlyContext<'_>, pat: &Pat) { if let PatKind::Struct(ref npat, ref pfields, _) = pat.node { let mut wilds = 0; let type_name = npat .segments .last() .expect("A path must have at least one segment") .ident .name; for field in pfields { if let PatKind::Wild = field.pat.node { wilds += 1; } } if !pfields.is_empty() && wilds == pfields.len() { span_help_and_lint( cx, UNNEEDED_FIELD_PATTERN, pat.span, "All the struct fields are matched to a wildcard pattern, consider using `..`.", &format!("Try with `{} {{ .. }}` instead", type_name), ); return; } if wilds > 0 { let mut normal = vec![]; for field in pfields { match field.pat.node { PatKind::Wild => {}, _ => { if let Ok(n) = cx.sess().source_map().span_to_snippet(field.span) { normal.push(n); } }, } } for field in pfields { if let PatKind::Wild = field.pat.node { wilds -= 1; if wilds > 0 { span_lint( cx, UNNEEDED_FIELD_PATTERN, field.span, "You matched a field with a wildcard pattern. Consider using `..` instead", ); } else { span_help_and_lint( cx, UNNEEDED_FIELD_PATTERN, field.span, "You matched a field with a wildcard pattern. Consider using `..` \ instead", &format!("Try with `{} {{ {}, .. }}`", type_name, normal[..].join(", ")), ); } } } } } } fn check_fn(&mut self, cx: &EarlyContext<'_>, _: FnKind<'_>, decl: &FnDecl, _: Span, _: NodeId) { let mut registered_names: FxHashMap = FxHashMap::default(); for arg in &decl.inputs { if let PatKind::Ident(_, ident, None) = arg.pat.node { let arg_name = ident.to_string(); if arg_name.starts_with('_') { if let Some(correspondence) = registered_names.get(&arg_name[1..]) { span_lint( cx, DUPLICATE_UNDERSCORE_ARGUMENT, *correspondence, &format!( "`{}` already exists, having another argument having almost the same \ name makes code comprehension and documentation more difficult", arg_name[1..].to_owned() ), ); } } else { registered_names.insert(arg_name, arg.pat.span); } } } } fn check_expr(&mut self, cx: &EarlyContext<'_>, expr: &Expr) { if in_external_macro(cx.sess(), expr.span) { return; } match expr.node { ExprKind::Call(ref paren, _) => { if let ExprKind::Paren(ref closure) = paren.node { if let ExprKind::Closure(_, _, _, ref decl, ref block, _) = closure.node { let mut visitor = ReturnVisitor::new(); visitor.visit_expr(block); if !visitor.found_return { span_lint_and_then( cx, REDUNDANT_CLOSURE_CALL, expr.span, "Try not to call a closure in the expression where it is declared.", |db| { if decl.inputs.is_empty() { let hint = snippet(cx, block.span, "..").into_owned(); db.span_suggestion( expr.span, "Try doing something like: ", hint, Applicability::MachineApplicable, // snippet ); } }, ); } } } }, ExprKind::Unary(UnOp::Neg, ref inner) => { if let ExprKind::Unary(UnOp::Neg, _) = inner.node { span_lint( cx, DOUBLE_NEG, expr.span, "`--x` could be misinterpreted as pre-decrement by C programmers, is usually a no-op", ); } }, ExprKind::Lit(ref lit) => self.check_lit(cx, lit), _ => (), } } fn check_block(&mut self, cx: &EarlyContext<'_>, block: &Block) { for w in block.stmts.windows(2) { if_chain! { if let StmtKind::Local(ref local) = w[0].node; if let Option::Some(ref t) = local.init; if let ExprKind::Closure(..) = t.node; if let PatKind::Ident(_, ident, _) = local.pat.node; if let StmtKind::Semi(ref second) = w[1].node; if let ExprKind::Assign(_, ref call) = second.node; if let ExprKind::Call(ref closure, _) = call.node; if let ExprKind::Path(_, ref path) = closure.node; then { if ident == path.segments[0].ident { span_lint( cx, REDUNDANT_CLOSURE_CALL, second.span, "Closure called just once immediately after it was declared", ); } } } } } } impl MiscEarlyLints { fn check_lit(self, cx: &EarlyContext<'_>, lit: &Lit) { // The `line!()` macro is compiler built-in and a special case for these lints. let lit_snip = match snippet_opt(cx, lit.span) { Some(snip) => { // The snip could be empty in case of expand from procedure macro if snip.is_empty() || snip.contains('!') { return; } snip }, _ => return, }; if let LitKind::Int(value, lit_int_type) = lit.node { let suffix = match lit_int_type { LitIntType::Signed(ty) => ty.ty_to_string(), LitIntType::Unsigned(ty) => ty.ty_to_string(), LitIntType::Unsuffixed => "", }; let maybe_last_sep_idx = lit_snip.len() - suffix.len() - 1; // Do not lint when literal is unsuffixed. if !suffix.is_empty() && lit_snip.as_bytes()[maybe_last_sep_idx] != b'_' { span_lint_and_sugg( cx, UNSEPARATED_LITERAL_SUFFIX, lit.span, "integer type suffix should be separated by an underscore", "add an underscore", format!("{}_{}", &lit_snip[..=maybe_last_sep_idx], suffix), Applicability::MachineApplicable, ); } if lit_snip.starts_with("0x") { let mut seen = (false, false); for ch in lit_snip.as_bytes()[2..=maybe_last_sep_idx].iter() { match ch { b'a'..=b'f' => seen.0 = true, b'A'..=b'F' => seen.1 = true, _ => {}, } if seen.0 && seen.1 { span_lint( cx, MIXED_CASE_HEX_LITERALS, lit.span, "inconsistent casing in hexadecimal literal", ); break; } } } else if lit_snip.starts_with("0b") || lit_snip.starts_with("0o") { /* nothing to do */ } else if value != 0 && lit_snip.starts_with('0') { span_lint_and_then( cx, ZERO_PREFIXED_LITERAL, lit.span, "this is a decimal constant", |db| { db.span_suggestion( lit.span, "if you mean to use a decimal constant, remove the `0` to avoid confusion", lit_snip.trim_start_matches(|c| c == '_' || c == '0').to_string(), Applicability::MaybeIncorrect, ); db.span_suggestion( lit.span, "if you mean to use an octal constant, use `0o`", format!("0o{}", lit_snip.trim_start_matches(|c| c == '_' || c == '0')), Applicability::MaybeIncorrect, ); }, ); } } else if let LitKind::Float(_, float_ty) = lit.node { let suffix = float_ty.ty_to_string(); let maybe_last_sep_idx = lit_snip.len() - suffix.len() - 1; if lit_snip.as_bytes()[maybe_last_sep_idx] != b'_' { span_lint_and_sugg( cx, UNSEPARATED_LITERAL_SUFFIX, lit.span, "float type suffix should be separated by an underscore", "add an underscore", format!("{}_{}", &lit_snip[..=maybe_last_sep_idx], suffix), Applicability::MachineApplicable, ); } } } }