//! Checks for uses of const which the type is not `Freeze` (`Cell`-free). //! //! This lint is **warn** by default. use std::ptr; use clippy_utils::diagnostics::span_lint_and_then; use clippy_utils::in_constant; use if_chain::if_chain; use rustc_hir::def::{DefKind, Res}; use rustc_hir::def_id::DefId; use rustc_hir::{ BodyId, Expr, ExprKind, HirId, Impl, ImplItem, ImplItemKind, Item, ItemKind, Node, TraitItem, TraitItemKind, UnOp, }; use rustc_infer::traits::specialization_graph; use rustc_lint::{LateContext, LateLintPass, Lint}; use rustc_middle::mir::interpret::{ConstValue, ErrorHandled}; use rustc_middle::ty::adjustment::Adjust; use rustc_middle::ty::{self, AssocKind, Const, Ty}; use rustc_session::{declare_lint_pass, declare_tool_lint}; use rustc_span::{InnerSpan, Span, DUMMY_SP}; use rustc_typeck::hir_ty_to_ty; // FIXME: this is a correctness problem but there's no suitable // warn-by-default category. declare_clippy_lint! { /// ### What it does /// Checks for declaration of `const` items which is interior /// mutable (e.g., contains a `Cell`, `Mutex`, `AtomicXxxx`, etc.). /// /// ### Why is this bad? /// Consts are copied everywhere they are referenced, i.e., /// every time you refer to the const a fresh instance of the `Cell` or `Mutex` /// or `AtomicXxxx` will be created, which defeats the whole purpose of using /// these types in the first place. /// /// The `const` should better be replaced by a `static` item if a global /// variable is wanted, or replaced by a `const fn` if a constructor is wanted. /// /// ### Known problems /// A "non-constant" const item is a legacy way to supply an /// initialized value to downstream `static` items (e.g., the /// `std::sync::ONCE_INIT` constant). In this case the use of `const` is legit, /// and this lint should be suppressed. /// /// Even though the lint avoids triggering on a constant whose type has enums that have variants /// with interior mutability, and its value uses non interior mutable variants (see /// [#3962](https://github.com/rust-lang/rust-clippy/issues/3962) and /// [#3825](https://github.com/rust-lang/rust-clippy/issues/3825) for examples); /// it complains about associated constants without default values only based on its types; /// which might not be preferable. /// There're other enums plus associated constants cases that the lint cannot handle. /// /// Types that have underlying or potential interior mutability trigger the lint whether /// the interior mutable field is used or not. See issues /// [#5812](https://github.com/rust-lang/rust-clippy/issues/5812) and /// /// ### Example /// ```rust /// use std::sync::atomic::{AtomicUsize, Ordering::SeqCst}; /// /// // Bad. /// const CONST_ATOM: AtomicUsize = AtomicUsize::new(12); /// CONST_ATOM.store(6, SeqCst); // the content of the atomic is unchanged /// assert_eq!(CONST_ATOM.load(SeqCst), 12); // because the CONST_ATOM in these lines are distinct /// /// // Good. /// static STATIC_ATOM: AtomicUsize = AtomicUsize::new(15); /// STATIC_ATOM.store(9, SeqCst); /// assert_eq!(STATIC_ATOM.load(SeqCst), 9); // use a `static` item to refer to the same instance /// ``` pub DECLARE_INTERIOR_MUTABLE_CONST, style, "declaring `const` with interior mutability" } // FIXME: this is a correctness problem but there's no suitable // warn-by-default category. declare_clippy_lint! { /// ### What it does /// Checks if `const` items which is interior mutable (e.g., /// contains a `Cell`, `Mutex`, `AtomicXxxx`, etc.) has been borrowed directly. /// /// ### Why is this bad? /// Consts are copied everywhere they are referenced, i.e., /// every time you refer to the const a fresh instance of the `Cell` or `Mutex` /// or `AtomicXxxx` will be created, which defeats the whole purpose of using /// these types in the first place. /// /// The `const` value should be stored inside a `static` item. /// /// ### Known problems /// When an enum has variants with interior mutability, use of its non /// interior mutable variants can generate false positives. See issue /// [#3962](https://github.com/rust-lang/rust-clippy/issues/3962) /// /// Types that have underlying or potential interior mutability trigger the lint whether /// the interior mutable field is used or not. See issues /// [#5812](https://github.com/rust-lang/rust-clippy/issues/5812) and /// [#3825](https://github.com/rust-lang/rust-clippy/issues/3825) /// /// ### Example /// ```rust /// use std::sync::atomic::{AtomicUsize, Ordering::SeqCst}; /// const CONST_ATOM: AtomicUsize = AtomicUsize::new(12); /// /// // Bad. /// CONST_ATOM.store(6, SeqCst); // the content of the atomic is unchanged /// assert_eq!(CONST_ATOM.load(SeqCst), 12); // because the CONST_ATOM in these lines are distinct /// /// // Good. /// static STATIC_ATOM: AtomicUsize = CONST_ATOM; /// STATIC_ATOM.store(9, SeqCst); /// assert_eq!(STATIC_ATOM.load(SeqCst), 9); // use a `static` item to refer to the same instance /// ``` pub BORROW_INTERIOR_MUTABLE_CONST, style, "referencing `const` with interior mutability" } fn is_unfrozen<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> bool { // Ignore types whose layout is unknown since `is_freeze` reports every generic types as `!Freeze`, // making it indistinguishable from `UnsafeCell`. i.e. it isn't a tool to prove a type is // 'unfrozen'. However, this code causes a false negative in which // a type contains a layout-unknown type, but also a unsafe cell like `const CELL: Cell`. // Yet, it's better than `ty.has_type_flags(TypeFlags::HAS_TY_PARAM | TypeFlags::HAS_PROJECTION)` // since it works when a pointer indirection involves (`Cell<*const T>`). // Making up a `ParamEnv` where every generic params and assoc types are `Freeze`is another option; // but I'm not sure whether it's a decent way, if possible. cx.tcx.layout_of(cx.param_env.and(ty)).is_ok() && !ty.is_freeze(cx.tcx.at(DUMMY_SP), cx.param_env) } fn is_value_unfrozen_raw<'tcx>( cx: &LateContext<'tcx>, result: Result, ErrorHandled>, ty: Ty<'tcx>, ) -> bool { fn inner<'tcx>(cx: &LateContext<'tcx>, val: &'tcx Const<'tcx>) -> bool { match val.ty.kind() { // the fact that we have to dig into every structs to search enums // leads us to the point checking `UnsafeCell` directly is the only option. ty::Adt(ty_def, ..) if Some(ty_def.did) == cx.tcx.lang_items().unsafe_cell_type() => true, ty::Array(..) | ty::Adt(..) | ty::Tuple(..) => { let val = cx.tcx.destructure_const(cx.param_env.and(val)); val.fields.iter().any(|field| inner(cx, field)) }, _ => false, } } result.map_or_else( |err| { // Consider `TooGeneric` cases as being unfrozen. // This causes a false positive where an assoc const whose type is unfrozen // have a value that is a frozen variant with a generic param (an example is // `declare_interior_mutable_const::enums::BothOfCellAndGeneric::GENERIC_VARIANT`). // However, it prevents a number of false negatives that is, I think, important: // 1. assoc consts in trait defs referring to consts of themselves // (an example is `declare_interior_mutable_const::traits::ConcreteTypes::ANOTHER_ATOMIC`). // 2. a path expr referring to assoc consts whose type is doesn't have // any frozen variants in trait defs (i.e. without substitute for `Self`). // (e.g. borrowing `borrow_interior_mutable_const::trait::ConcreteTypes::ATOMIC`) // 3. similar to the false positive above; // but the value is an unfrozen variant, or the type has no enums. (An example is // `declare_interior_mutable_const::enums::BothOfCellAndGeneric::UNFROZEN_VARIANT` // and `declare_interior_mutable_const::enums::BothOfCellAndGeneric::NO_ENUM`). // One might be able to prevent these FNs correctly, and replace this with `false`; // e.g. implementing `has_frozen_variant` described above, and not running this function // when the type doesn't have any frozen variants would be the 'correct' way for the 2nd // case (that actually removes another suboptimal behavior (I won't say 'false positive') where, // similar to 2., but with the a frozen variant) (e.g. borrowing // `borrow_interior_mutable_const::enums::AssocConsts::TO_BE_FROZEN_VARIANT`). // I chose this way because unfrozen enums as assoc consts are rare (or, hopefully, none). err == ErrorHandled::TooGeneric }, |val| inner(cx, Const::from_value(cx.tcx, val, ty)), ) } fn is_value_unfrozen_poly<'tcx>(cx: &LateContext<'tcx>, body_id: BodyId, ty: Ty<'tcx>) -> bool { let result = cx.tcx.const_eval_poly(body_id.hir_id.owner.to_def_id()); is_value_unfrozen_raw(cx, result, ty) } fn is_value_unfrozen_expr<'tcx>(cx: &LateContext<'tcx>, hir_id: HirId, def_id: DefId, ty: Ty<'tcx>) -> bool { let substs = cx.typeck_results().node_substs(hir_id); let result = cx.tcx.const_eval_resolve( cx.param_env, ty::Unevaluated { def: ty::WithOptConstParam::unknown(def_id), substs, promoted: None, }, None, ); is_value_unfrozen_raw(cx, result, ty) } #[derive(Copy, Clone)] enum Source { Item { item: Span }, Assoc { item: Span }, Expr { expr: Span }, } impl Source { #[must_use] fn lint(&self) -> (&'static Lint, &'static str, Span) { match self { Self::Item { item } | Self::Assoc { item, .. } => ( DECLARE_INTERIOR_MUTABLE_CONST, "a `const` item should never be interior mutable", *item, ), Self::Expr { expr } => ( BORROW_INTERIOR_MUTABLE_CONST, "a `const` item with interior mutability should not be borrowed", *expr, ), } } } fn lint(cx: &LateContext<'_>, source: Source) { let (lint, msg, span) = source.lint(); span_lint_and_then(cx, lint, span, msg, |diag| { if span.from_expansion() { return; // Don't give suggestions into macros. } match source { Source::Item { .. } => { let const_kw_span = span.from_inner(InnerSpan::new(0, 5)); diag.span_label(const_kw_span, "make this a static item (maybe with lazy_static)"); }, Source::Assoc { .. } => (), Source::Expr { .. } => { diag.help("assign this const to a local or static variable, and use the variable here"); }, } }); } declare_lint_pass!(NonCopyConst => [DECLARE_INTERIOR_MUTABLE_CONST, BORROW_INTERIOR_MUTABLE_CONST]); impl<'tcx> LateLintPass<'tcx> for NonCopyConst { fn check_item(&mut self, cx: &LateContext<'tcx>, it: &'tcx Item<'_>) { if let ItemKind::Const(hir_ty, body_id) = it.kind { let ty = hir_ty_to_ty(cx.tcx, hir_ty); if is_unfrozen(cx, ty) && is_value_unfrozen_poly(cx, body_id, ty) { lint(cx, Source::Item { item: it.span }); } } } fn check_trait_item(&mut self, cx: &LateContext<'tcx>, trait_item: &'tcx TraitItem<'_>) { if let TraitItemKind::Const(hir_ty, body_id_opt) = &trait_item.kind { let ty = hir_ty_to_ty(cx.tcx, hir_ty); // Normalize assoc types because ones originated from generic params // bounded other traits could have their bound. let normalized = cx.tcx.normalize_erasing_regions(cx.param_env, ty); if is_unfrozen(cx, normalized) // When there's no default value, lint it only according to its type; // in other words, lint consts whose value *could* be unfrozen, not definitely is. // This feels inconsistent with how the lint treats generic types, // which avoids linting types which potentially become unfrozen. // One could check whether a unfrozen type have a *frozen variant* // (like `body_id_opt.map_or_else(|| !has_frozen_variant(...), ...)`), // and do the same as the case of generic types at impl items. // Note that it isn't sufficient to check if it has an enum // since all of that enum's variants can be unfrozen: // i.e. having an enum doesn't necessary mean a type has a frozen variant. // And, implementing it isn't a trivial task; it'll probably end up // re-implementing the trait predicate evaluation specific to `Freeze`. && body_id_opt.map_or(true, |body_id| is_value_unfrozen_poly(cx, body_id, normalized)) { lint(cx, Source::Assoc { item: trait_item.span }); } } } fn check_impl_item(&mut self, cx: &LateContext<'tcx>, impl_item: &'tcx ImplItem<'_>) { if let ImplItemKind::Const(hir_ty, body_id) = &impl_item.kind { let item_hir_id = cx.tcx.hir().get_parent_node(impl_item.hir_id()); let item = cx.tcx.hir().expect_item(item_hir_id); match &item.kind { ItemKind::Impl(Impl { of_trait: Some(of_trait_ref), .. }) => { if_chain! { // Lint a trait impl item only when the definition is a generic type, // assuming a assoc const is not meant to be a interior mutable type. if let Some(of_trait_def_id) = of_trait_ref.trait_def_id(); if let Some(of_assoc_item) = specialization_graph::Node::Trait(of_trait_def_id) .item(cx.tcx, impl_item.ident, AssocKind::Const, of_trait_def_id); if cx .tcx .layout_of(cx.tcx.param_env(of_trait_def_id).and( // Normalize assoc types because ones originated from generic params // bounded other traits could have their bound at the trait defs; // and, in that case, the definition is *not* generic. cx.tcx.normalize_erasing_regions( cx.tcx.param_env(of_trait_def_id), cx.tcx.type_of(of_assoc_item.def_id), ), )) .is_err(); // If there were a function like `has_frozen_variant` described above, // we should use here as a frozen variant is a potential to be frozen // similar to unknown layouts. // e.g. `layout_of(...).is_err() || has_frozen_variant(...);` let ty = hir_ty_to_ty(cx.tcx, hir_ty); let normalized = cx.tcx.normalize_erasing_regions(cx.param_env, ty); if is_unfrozen(cx, normalized); if is_value_unfrozen_poly(cx, *body_id, normalized); then { lint( cx, Source::Assoc { item: impl_item.span, }, ); } } }, ItemKind::Impl(Impl { of_trait: None, .. }) => { let ty = hir_ty_to_ty(cx.tcx, hir_ty); // Normalize assoc types originated from generic params. let normalized = cx.tcx.normalize_erasing_regions(cx.param_env, ty); if is_unfrozen(cx, ty) && is_value_unfrozen_poly(cx, *body_id, normalized) { lint(cx, Source::Assoc { item: impl_item.span }); } }, _ => (), } } } fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) { if let ExprKind::Path(qpath) = &expr.kind { // Only lint if we use the const item inside a function. if in_constant(cx, expr.hir_id) { return; } // Make sure it is a const item. let item_def_id = match cx.qpath_res(qpath, expr.hir_id) { Res::Def(DefKind::Const | DefKind::AssocConst, did) => did, _ => return, }; // Climb up to resolve any field access and explicit referencing. let mut cur_expr = expr; let mut dereferenced_expr = expr; let mut needs_check_adjustment = true; loop { let parent_id = cx.tcx.hir().get_parent_node(cur_expr.hir_id); if parent_id == cur_expr.hir_id { break; } if let Some(Node::Expr(parent_expr)) = cx.tcx.hir().find(parent_id) { match &parent_expr.kind { ExprKind::AddrOf(..) => { // `&e` => `e` must be referenced. needs_check_adjustment = false; }, ExprKind::Field(..) => { needs_check_adjustment = true; // Check whether implicit dereferences happened; // if so, no need to go further up // because of the same reason as the `ExprKind::Unary` case. if cx .typeck_results() .expr_adjustments(dereferenced_expr) .iter() .any(|adj| matches!(adj.kind, Adjust::Deref(_))) { break; } dereferenced_expr = parent_expr; }, ExprKind::Index(e, _) if ptr::eq(&**e, cur_expr) => { // `e[i]` => desugared to `*Index::index(&e, i)`, // meaning `e` must be referenced. // no need to go further up since a method call is involved now. needs_check_adjustment = false; break; }, ExprKind::Unary(UnOp::Deref, _) => { // `*e` => desugared to `*Deref::deref(&e)`, // meaning `e` must be referenced. // no need to go further up since a method call is involved now. needs_check_adjustment = false; break; }, _ => break, } cur_expr = parent_expr; } else { break; } } let ty = if needs_check_adjustment { let adjustments = cx.typeck_results().expr_adjustments(dereferenced_expr); if let Some(i) = adjustments .iter() .position(|adj| matches!(adj.kind, Adjust::Borrow(_) | Adjust::Deref(_))) { if i == 0 { cx.typeck_results().expr_ty(dereferenced_expr) } else { adjustments[i - 1].target } } else { // No borrow adjustments means the entire const is moved. return; } } else { cx.typeck_results().expr_ty(dereferenced_expr) }; if is_unfrozen(cx, ty) && is_value_unfrozen_expr(cx, expr.hir_id, item_def_id, ty) { lint(cx, Source::Expr { expr: expr.span }); } } } }