use crate::utils::paths::FUTURE_FROM_GENERATOR; use crate::utils::{match_function_call, snippet_block, snippet_opt, span_lint_and_then}; use if_chain::if_chain; use rustc_errors::Applicability; use rustc_hir::intravisit::FnKind; use rustc_hir::{ AsyncGeneratorKind, Block, Body, Expr, ExprKind, FnDecl, FnRetTy, GeneratorKind, GenericBound, HirId, IsAsync, ItemKind, TraitRef, Ty, TyKind, TypeBindingKind, }; use rustc_lint::{LateContext, LateLintPass}; use rustc_session::{declare_lint_pass, declare_tool_lint}; use rustc_span::Span; declare_clippy_lint! { /// **What it does:** It checks for manual implementations of `async` functions. /// /// **Why is this bad?** It's more idiomatic to use the dedicated syntax. /// /// **Known problems:** None. /// /// **Example:** /// /// ```rust /// use std::future::Future; /// /// fn foo() -> impl Future { async { 42 } } /// ``` /// Use instead: /// ```rust /// use std::future::Future; /// /// async fn foo() -> i32 { 42 } /// ``` pub MANUAL_ASYNC_FN, style, "manual implementations of `async` functions can be simplified using the dedicated syntax" } declare_lint_pass!(ManualAsyncFn => [MANUAL_ASYNC_FN]); impl<'a, 'tcx> LateLintPass<'a, 'tcx> for ManualAsyncFn { fn check_fn( &mut self, cx: &LateContext<'a, 'tcx>, kind: FnKind<'tcx>, decl: &'tcx FnDecl<'_>, body: &'tcx Body<'_>, span: Span, _: HirId, ) { if_chain! { if let Some(header) = kind.header(); if let IsAsync::NotAsync = header.asyncness; // Check that this function returns `impl Future` if let FnRetTy::Return(ret_ty) = decl.output; if let Some(trait_ref) = future_trait_ref(cx, ret_ty); if let Some(output) = future_output_ty(trait_ref); // Check that the body of the function consists of one async block if let ExprKind::Block(block, _) = body.value.kind; if block.stmts.is_empty(); if let Some(closure_body) = desugared_async_block(cx, block); then { let header_span = span.with_hi(ret_ty.span.hi()); span_lint_and_then( cx, MANUAL_ASYNC_FN, header_span, "this function can be simplified using the `async fn` syntax", |diag| { if_chain! { if let Some(header_snip) = snippet_opt(cx, header_span); if let Some(ret_pos) = header_snip.rfind("->"); if let Some((ret_sugg, ret_snip)) = suggested_ret(cx, output); then { let help = format!("make the function `async` and {}", ret_sugg); diag.span_suggestion( header_span, &help, format!("async {}{}", &header_snip[..ret_pos], ret_snip), Applicability::MachineApplicable ); let body_snip = snippet_block(cx, closure_body.value.span, "..", Some(block.span)); diag.span_suggestion( block.span, "move the body of the async block to the enclosing function", body_snip.to_string(), Applicability::MachineApplicable ); } } }, ); } } } } fn future_trait_ref<'tcx>(cx: &LateContext<'_, 'tcx>, ty: &'tcx Ty<'tcx>) -> Option<&'tcx TraitRef<'tcx>> { if_chain! { if let TyKind::Def(item_id, _) = ty.kind; let item = cx.tcx.hir().item(item_id.id); if let ItemKind::OpaqueTy(opaque) = &item.kind; if opaque.bounds.len() == 1; if let GenericBound::Trait(poly, _) = &opaque.bounds[0]; if poly.trait_ref.trait_def_id() == cx.tcx.lang_items().future_trait(); then { return Some(&poly.trait_ref); } } None } fn future_output_ty<'tcx>(trait_ref: &'tcx TraitRef<'tcx>) -> Option<&'tcx Ty<'tcx>> { if_chain! { if let Some(segment) = trait_ref.path.segments.last(); if let Some(args) = segment.args; if args.bindings.len() == 1; let binding = &args.bindings[0]; if binding.ident.as_str() == "Output"; if let TypeBindingKind::Equality{ty: output} = binding.kind; then { return Some(output) } } None } fn desugared_async_block<'tcx>(cx: &LateContext<'_, 'tcx>, block: &'tcx Block<'tcx>) -> Option<&'tcx Body<'tcx>> { if_chain! { if let Some(block_expr) = block.expr; if let Some(args) = match_function_call(cx, block_expr, &FUTURE_FROM_GENERATOR); if args.len() == 1; if let Expr{kind: ExprKind::Closure(_, _, body_id, ..), ..} = args[0]; let closure_body = cx.tcx.hir().body(body_id); if let Some(GeneratorKind::Async(AsyncGeneratorKind::Block)) = closure_body.generator_kind; then { return Some(closure_body); } } None } fn suggested_ret(cx: &LateContext<'_, '_>, output: &Ty<'_>) -> Option<(&'static str, String)> { match output.kind { TyKind::Tup(tys) if tys.is_empty() => { let sugg = "remove the return type"; Some((sugg, "".into())) }, _ => { let sugg = "return the output of the future directly"; snippet_opt(cx, output.span).map(|snip| (sugg, format!("-> {}", snip))) }, } }