use clippy_utils::diagnostics::{span_lint, span_lint_and_then}; use rustc_ast::ast::{ self, Arm, AssocItem, AssocItemKind, Attribute, Block, FnDecl, Item, ItemKind, Local, Pat, PatKind, }; use rustc_ast::visit::{walk_block, walk_expr, walk_pat, Visitor}; use rustc_lint::{EarlyContext, EarlyLintPass, LintContext}; use rustc_middle::lint::in_external_macro; use rustc_session::{declare_tool_lint, impl_lint_pass}; use rustc_span::source_map::Span; use rustc_span::sym; use rustc_span::symbol::{Ident, Symbol}; use std::cmp::Ordering; declare_clippy_lint! { /// ### What it does /// Checks for names that are very similar and thus confusing. /// /// ### Why is this bad? /// It's hard to distinguish between names that differ only /// by a single character. /// /// ### Example /// ```ignore /// let checked_exp = something; /// let checked_expr = something_else; /// ``` #[clippy::version = "pre 1.29.0"] pub SIMILAR_NAMES, pedantic, "similarly named items and bindings" } declare_clippy_lint! { /// ### What it does /// Checks for too many variables whose name consists of a /// single character. /// /// ### Why is this bad? /// It's hard to memorize what a variable means without a /// descriptive name. /// /// ### Example /// ```ignore /// let (a, b, c, d, e, f, g) = (...); /// ``` #[clippy::version = "pre 1.29.0"] pub MANY_SINGLE_CHAR_NAMES, pedantic, "too many single character bindings" } declare_clippy_lint! { /// ### What it does /// Checks if you have variables whose name consists of just /// underscores and digits. /// /// ### Why is this bad? /// It's hard to memorize what a variable means without a /// descriptive name. /// /// ### Example /// ```rust /// let _1 = 1; /// let ___1 = 1; /// let __1___2 = 11; /// ``` #[clippy::version = "pre 1.29.0"] pub JUST_UNDERSCORES_AND_DIGITS, style, "unclear name" } #[derive(Copy, Clone)] pub struct NonExpressiveNames { pub single_char_binding_names_threshold: u64, } impl_lint_pass!(NonExpressiveNames => [SIMILAR_NAMES, MANY_SINGLE_CHAR_NAMES, JUST_UNDERSCORES_AND_DIGITS]); struct ExistingName { interned: Symbol, span: Span, len: usize, exemptions: &'static [&'static str], } struct SimilarNamesLocalVisitor<'a, 'tcx> { names: Vec, cx: &'a EarlyContext<'tcx>, lint: &'a NonExpressiveNames, /// A stack of scopes containing the single-character bindings in each scope. single_char_names: Vec>, } impl<'a, 'tcx> SimilarNamesLocalVisitor<'a, 'tcx> { fn check_single_char_names(&self) { let num_single_char_names = self.single_char_names.iter().flatten().count(); let threshold = self.lint.single_char_binding_names_threshold; if num_single_char_names as u64 > threshold { let span = self .single_char_names .iter() .flatten() .map(|ident| ident.span) .collect::>(); span_lint( self.cx, MANY_SINGLE_CHAR_NAMES, span, &format!( "{} bindings with single-character names in scope", num_single_char_names ), ); } } } // this list contains lists of names that are allowed to be similar // the assumption is that no name is ever contained in multiple lists. #[rustfmt::skip] const ALLOWED_TO_BE_SIMILAR: &[&[&str]] = &[ &["parsed", "parser"], &["lhs", "rhs"], &["tx", "rx"], &["set", "get"], &["args", "arms"], &["qpath", "path"], &["lit", "lint"], &["wparam", "lparam"], &["iter", "item"], ]; struct SimilarNamesNameVisitor<'a, 'tcx, 'b>(&'b mut SimilarNamesLocalVisitor<'a, 'tcx>); impl<'a, 'tcx, 'b> Visitor<'tcx> for SimilarNamesNameVisitor<'a, 'tcx, 'b> { fn visit_pat(&mut self, pat: &'tcx Pat) { match pat.kind { PatKind::Ident(_, ident, _) => { if !pat.span.from_expansion() { self.check_ident(ident); } }, PatKind::Struct(_, _, ref fields, _) => { for field in fields { if !field.is_shorthand { self.visit_pat(&field.pat); } } }, // just go through the first pattern, as either all patterns // bind the same bindings or rustc would have errored much earlier PatKind::Or(ref pats) => self.visit_pat(&pats[0]), _ => walk_pat(self, pat), } } } #[must_use] fn get_exemptions(interned_name: &str) -> Option<&'static [&'static str]> { for &list in ALLOWED_TO_BE_SIMILAR { if allowed_to_be_similar(interned_name, list) { return Some(list); } } None } #[must_use] fn allowed_to_be_similar(interned_name: &str, list: &[&str]) -> bool { list.iter() .any(|&name| interned_name.starts_with(name) || interned_name.ends_with(name)) } impl<'a, 'tcx, 'b> SimilarNamesNameVisitor<'a, 'tcx, 'b> { fn check_short_ident(&mut self, ident: Ident) { // Ignore shadowing if self .0 .single_char_names .iter() .flatten() .any(|id| id.name == ident.name) { return; } if let Some(scope) = &mut self.0.single_char_names.last_mut() { scope.push(ident); } } #[allow(clippy::too_many_lines)] fn check_ident(&mut self, ident: Ident) { let interned_name = ident.name.as_str(); if interned_name.chars().any(char::is_uppercase) { return; } if interned_name.chars().all(|c| c.is_ascii_digit() || c == '_') { span_lint( self.0.cx, JUST_UNDERSCORES_AND_DIGITS, ident.span, "consider choosing a more descriptive name", ); return; } if interned_name.starts_with('_') { // these bindings are typically unused or represent an ignored portion of a destructuring pattern return; } let count = interned_name.chars().count(); if count < 3 { if count == 1 { self.check_short_ident(ident); } return; } for existing_name in &self.0.names { if allowed_to_be_similar(interned_name, existing_name.exemptions) { continue; } match existing_name.len.cmp(&count) { Ordering::Greater => { if existing_name.len - count != 1 || levenstein_not_1(interned_name, existing_name.interned.as_str()) { continue; } }, Ordering::Less => { if count - existing_name.len != 1 || levenstein_not_1(existing_name.interned.as_str(), interned_name) { continue; } }, Ordering::Equal => { let mut interned_chars = interned_name.chars(); let interned_str = existing_name.interned.as_str(); let mut existing_chars = interned_str.chars(); let first_i = interned_chars.next().expect("we know we have at least one char"); let first_e = existing_chars.next().expect("we know we have at least one char"); let eq_or_numeric = |(a, b): (char, char)| a == b || a.is_numeric() && b.is_numeric(); if eq_or_numeric((first_i, first_e)) { let last_i = interned_chars.next_back().expect("we know we have at least two chars"); let last_e = existing_chars.next_back().expect("we know we have at least two chars"); if eq_or_numeric((last_i, last_e)) { if interned_chars .zip(existing_chars) .filter(|&ie| !eq_or_numeric(ie)) .count() != 1 { continue; } } else { let second_last_i = interned_chars .next_back() .expect("we know we have at least three chars"); let second_last_e = existing_chars .next_back() .expect("we know we have at least three chars"); if !eq_or_numeric((second_last_i, second_last_e)) || second_last_i == '_' || !interned_chars.zip(existing_chars).all(eq_or_numeric) { // allowed similarity foo_x, foo_y // or too many chars differ (foo_x, boo_y) or (foox, booy) continue; } } } else { let second_i = interned_chars.next().expect("we know we have at least two chars"); let second_e = existing_chars.next().expect("we know we have at least two chars"); if !eq_or_numeric((second_i, second_e)) || second_i == '_' || !interned_chars.zip(existing_chars).all(eq_or_numeric) { // allowed similarity x_foo, y_foo // or too many chars differ (x_foo, y_boo) or (xfoo, yboo) continue; } } }, } span_lint_and_then( self.0.cx, SIMILAR_NAMES, ident.span, "binding's name is too similar to existing binding", |diag| { diag.span_note(existing_name.span, "existing binding defined here"); }, ); return; } self.0.names.push(ExistingName { exemptions: get_exemptions(interned_name).unwrap_or(&[]), interned: ident.name, span: ident.span, len: count, }); } } impl<'a, 'b> SimilarNamesLocalVisitor<'a, 'b> { /// ensure scoping rules work fn apply Fn(&'c mut Self)>(&mut self, f: F) { let n = self.names.len(); let single_char_count = self.single_char_names.len(); f(self); self.names.truncate(n); self.single_char_names.truncate(single_char_count); } } impl<'a, 'tcx> Visitor<'tcx> for SimilarNamesLocalVisitor<'a, 'tcx> { fn visit_local(&mut self, local: &'tcx Local) { if let Some((init, els)) = &local.kind.init_else_opt() { self.apply(|this| walk_expr(this, init)); if let Some(els) = els { self.apply(|this| walk_block(this, els)); } } // add the pattern after the expression because the bindings aren't available // yet in the init // expression SimilarNamesNameVisitor(self).visit_pat(&*local.pat); } fn visit_block(&mut self, blk: &'tcx Block) { self.single_char_names.push(vec![]); self.apply(|this| walk_block(this, blk)); self.check_single_char_names(); self.single_char_names.pop(); } fn visit_arm(&mut self, arm: &'tcx Arm) { self.single_char_names.push(vec![]); self.apply(|this| { SimilarNamesNameVisitor(this).visit_pat(&arm.pat); this.apply(|this| walk_expr(this, &arm.body)); }); self.check_single_char_names(); self.single_char_names.pop(); } fn visit_item(&mut self, _: &Item) { // do not recurse into inner items } } impl EarlyLintPass for NonExpressiveNames { fn check_item(&mut self, cx: &EarlyContext<'_>, item: &Item) { if in_external_macro(cx.sess(), item.span) { return; } if let ItemKind::Fn(box ast::Fn { ref sig, body: Some(ref blk), .. }) = item.kind { do_check(self, cx, &item.attrs, &sig.decl, blk); } } fn check_impl_item(&mut self, cx: &EarlyContext<'_>, item: &AssocItem) { if in_external_macro(cx.sess(), item.span) { return; } if let AssocItemKind::Fn(box ast::Fn { ref sig, body: Some(ref blk), .. }) = item.kind { do_check(self, cx, &item.attrs, &sig.decl, blk); } } } fn do_check(lint: &mut NonExpressiveNames, cx: &EarlyContext<'_>, attrs: &[Attribute], decl: &FnDecl, blk: &Block) { if !attrs.iter().any(|attr| attr.has_name(sym::test)) { let mut visitor = SimilarNamesLocalVisitor { names: Vec::new(), cx, lint, single_char_names: vec![vec![]], }; // initialize with function arguments for arg in &decl.inputs { SimilarNamesNameVisitor(&mut visitor).visit_pat(&arg.pat); } // walk all other bindings walk_block(&mut visitor, blk); visitor.check_single_char_names(); } } /// Precondition: `a_name.chars().count() < b_name.chars().count()`. #[must_use] fn levenstein_not_1(a_name: &str, b_name: &str) -> bool { debug_assert!(a_name.chars().count() < b_name.chars().count()); let mut a_chars = a_name.chars(); let mut b_chars = b_name.chars(); while let (Some(a), Some(b)) = (a_chars.next(), b_chars.next()) { if a == b { continue; } if let Some(b2) = b_chars.next() { // check if there's just one character inserted return a != b2 || a_chars.ne(b_chars); } // tuple // ntuple return true; } // for item in items true }