use crate::utils::{ constants, snippet_opt, snippet_with_applicability, span_lint, span_lint_and_help, span_lint_and_sugg, span_lint_and_then, }; use if_chain::if_chain; use rustc_ast::ast::{ BindingMode, Block, Expr, ExprKind, GenericParamKind, Generics, Lit, LitFloatType, LitIntType, LitKind, Mutability, NodeId, Pat, PatKind, StmtKind, UnOp, }; use rustc_ast::visit::{walk_expr, FnKind, Visitor}; use rustc_data_structures::fx::FxHashMap; use rustc_errors::Applicability; use rustc_lint::{EarlyContext, EarlyLintPass, LintContext}; use rustc_middle::lint::in_external_macro; use rustc_session::{declare_lint_pass, declare_tool_lint}; use rustc_span::source_map::Span; declare_clippy_lint! { /// **What it does:** Checks for structure field patterns bound to wildcards. /// /// **Why is this bad?** Using `..` instead is shorter and leaves the focus on /// the fields that are actually bound. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// # struct Foo { /// # a: i32, /// # b: i32, /// # c: i32, /// # } /// let f = Foo { a: 0, b: 0, c: 0 }; /// /// // Bad /// match f { /// Foo { a: _, b: 0, .. } => {}, /// Foo { a: _, b: _, c: _ } => {}, /// } /// /// // Good /// match f { /// Foo { b: 0, .. } => {}, /// Foo { .. } => {}, /// } /// ``` pub UNNEEDED_FIELD_PATTERN, restriction, "struct fields bound to a wildcard instead of using `..`" } declare_clippy_lint! { /// **What it does:** Checks for function arguments having the similar names /// differing by an underscore. /// /// **Why is this bad?** It affects code readability. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// // Bad /// fn foo(a: i32, _a: i32) {} /// /// // Good /// fn bar(a: i32, _b: i32) {} /// ``` pub DUPLICATE_UNDERSCORE_ARGUMENT, style, "function arguments having names which only differ by an underscore" } declare_clippy_lint! { /// **What it does:** Detects closures called in the same expression where they /// are defined. /// /// **Why is this bad?** It is unnecessarily adding to the expression's /// complexity. /// /// **Known problems:** None. /// /// **Example:** /// ```rust,ignore /// // Bad /// let a = (|| 42)() /// /// // Good /// let a = 42 /// ``` pub REDUNDANT_CLOSURE_CALL, complexity, "throwaway closures called in the expression they are defined" } declare_clippy_lint! { /// **What it does:** Detects expressions of the form `--x`. /// /// **Why is this bad?** It can mislead C/C++ programmers to think `x` was /// decremented. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// let mut x = 3; /// --x; /// ``` pub DOUBLE_NEG, style, "`--x`, which is a double negation of `x` and not a pre-decrement as in C/C++" } declare_clippy_lint! { /// **What it does:** Warns on hexadecimal literals with mixed-case letter /// digits. /// /// **Why is this bad?** It looks confusing. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// // Bad /// let y = 0x1a9BAcD; /// /// // Good /// let y = 0x1A9BACD; /// ``` pub MIXED_CASE_HEX_LITERALS, style, "hex literals whose letter digits are not consistently upper- or lowercased" } declare_clippy_lint! { /// **What it does:** Warns if literal suffixes are not separated by an /// underscore. /// /// **Why is this bad?** It is much less readable. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// // Bad /// let y = 123832i32; /// /// // Good /// let y = 123832_i32; /// ``` pub UNSEPARATED_LITERAL_SUFFIX, pedantic, "literals whose suffix is not separated by an underscore" } declare_clippy_lint! { /// **What it does:** Warns if an integral constant literal starts with `0`. /// /// **Why is this bad?** In some languages (including the infamous C language /// and most of its /// family), this marks an octal constant. In Rust however, this is a decimal /// constant. This could /// be confusing for both the writer and a reader of the constant. /// /// **Known problems:** None. /// /// **Example:** /// /// In Rust: /// ```rust /// fn main() { /// let a = 0123; /// println!("{}", a); /// } /// ``` /// /// prints `123`, while in C: /// /// ```c /// #include /// /// int main() { /// int a = 0123; /// printf("%d\n", a); /// } /// ``` /// /// prints `83` (as `83 == 0o123` while `123 == 0o173`). pub ZERO_PREFIXED_LITERAL, complexity, "integer literals starting with `0`" } declare_clippy_lint! { /// **What it does:** Warns if a generic shadows a built-in type. /// /// **Why is this bad?** This gives surprising type errors. /// /// **Known problems:** None. /// /// **Example:** /// /// ```ignore /// impl Foo { /// fn impl_func(&self) -> u32 { /// 42 /// } /// } /// ``` pub BUILTIN_TYPE_SHADOW, style, "shadowing a builtin type" } declare_clippy_lint! { /// **What it does:** Checks for patterns in the form `name @ _`. /// /// **Why is this bad?** It's almost always more readable to just use direct /// bindings. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// # let v = Some("abc"); /// /// // Bad /// match v { /// Some(x) => (), /// y @ _ => (), /// } /// /// // Good /// match v { /// Some(x) => (), /// y => (), /// } /// ``` pub REDUNDANT_PATTERN, style, "using `name @ _` in a pattern" } declare_clippy_lint! { /// **What it does:** Checks for tuple patterns with a wildcard /// pattern (`_`) is next to a rest pattern (`..`). /// /// _NOTE_: While `_, ..` means there is at least one element left, `..` /// means there are 0 or more elements left. This can make a difference /// when refactoring, but shouldn't result in errors in the refactored code, /// since the wildcard pattern isn't used anyway. /// **Why is this bad?** The wildcard pattern is unneeded as the rest pattern /// can match that element as well. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// # struct TupleStruct(u32, u32, u32); /// # let t = TupleStruct(1, 2, 3); /// /// // Bad /// match t { /// TupleStruct(0, .., _) => (), /// _ => (), /// } /// /// // Good /// match t { /// TupleStruct(0, ..) => (), /// _ => (), /// } /// ``` pub UNNEEDED_WILDCARD_PATTERN, complexity, "tuple patterns with a wildcard pattern (`_`) is next to a rest pattern (`..`)" } declare_lint_pass!(MiscEarlyLints => [ UNNEEDED_FIELD_PATTERN, DUPLICATE_UNDERSCORE_ARGUMENT, REDUNDANT_CLOSURE_CALL, DOUBLE_NEG, MIXED_CASE_HEX_LITERALS, UNSEPARATED_LITERAL_SUFFIX, ZERO_PREFIXED_LITERAL, BUILTIN_TYPE_SHADOW, REDUNDANT_PATTERN, UNNEEDED_WILDCARD_PATTERN, ]); // Used to find `return` statements or equivalents e.g., `?` struct ReturnVisitor { found_return: bool, } impl ReturnVisitor { #[must_use] fn new() -> Self { Self { found_return: false } } } impl<'ast> Visitor<'ast> for ReturnVisitor { fn visit_expr(&mut self, ex: &'ast Expr) { if let ExprKind::Ret(_) = ex.kind { self.found_return = true; } else if let ExprKind::Try(_) = ex.kind { self.found_return = true; } walk_expr(self, ex) } } impl EarlyLintPass for MiscEarlyLints { fn check_generics(&mut self, cx: &EarlyContext<'_>, gen: &Generics) { for param in &gen.params { if let GenericParamKind::Type { .. } = param.kind { let name = param.ident.as_str(); if constants::BUILTIN_TYPES.contains(&&*name) { span_lint( cx, BUILTIN_TYPE_SHADOW, param.ident.span, &format!("This generic shadows the built-in type `{}`", name), ); } } } } fn check_pat(&mut self, cx: &EarlyContext<'_>, pat: &Pat) { if let PatKind::Struct(ref npat, ref pfields, _) = pat.kind { let mut wilds = 0; let type_name = npat .segments .last() .expect("A path must have at least one segment") .ident .name; for field in pfields { if let PatKind::Wild = field.pat.kind { wilds += 1; } } if !pfields.is_empty() && wilds == pfields.len() { span_lint_and_help( cx, UNNEEDED_FIELD_PATTERN, pat.span, "All the struct fields are matched to a wildcard pattern, consider using `..`.", None, &format!("Try with `{} {{ .. }}` instead", type_name), ); return; } if wilds > 0 { for field in pfields { if let PatKind::Wild = field.pat.kind { wilds -= 1; if wilds > 0 { span_lint( cx, UNNEEDED_FIELD_PATTERN, field.span, "You matched a field with a wildcard pattern. Consider using `..` instead", ); } else { let mut normal = vec![]; for field in pfields { match field.pat.kind { PatKind::Wild => {}, _ => { if let Ok(n) = cx.sess().source_map().span_to_snippet(field.span) { normal.push(n); } }, } } span_lint_and_help( cx, UNNEEDED_FIELD_PATTERN, field.span, "You matched a field with a wildcard pattern. Consider using `..` \ instead", None, &format!("Try with `{} {{ {}, .. }}`", type_name, normal[..].join(", ")), ); } } } } } if let PatKind::Ident(left, ident, Some(ref right)) = pat.kind { let left_binding = match left { BindingMode::ByRef(Mutability::Mut) => "ref mut ", BindingMode::ByRef(Mutability::Not) => "ref ", BindingMode::ByValue(..) => "", }; if let PatKind::Wild = right.kind { span_lint_and_sugg( cx, REDUNDANT_PATTERN, pat.span, &format!( "the `{} @ _` pattern can be written as just `{}`", ident.name, ident.name, ), "try", format!("{}{}", left_binding, ident.name), Applicability::MachineApplicable, ); } } check_unneeded_wildcard_pattern(cx, pat); } fn check_fn(&mut self, cx: &EarlyContext<'_>, fn_kind: FnKind<'_>, _: Span, _: NodeId) { let mut registered_names: FxHashMap = FxHashMap::default(); for arg in &fn_kind.decl().inputs { if let PatKind::Ident(_, ident, None) = arg.pat.kind { let arg_name = ident.to_string(); if arg_name.starts_with('_') { if let Some(correspondence) = registered_names.get(&arg_name[1..]) { span_lint( cx, DUPLICATE_UNDERSCORE_ARGUMENT, *correspondence, &format!( "`{}` already exists, having another argument having almost the same \ name makes code comprehension and documentation more difficult", arg_name[1..].to_owned() ), ); } } else { registered_names.insert(arg_name, arg.pat.span); } } } } fn check_expr(&mut self, cx: &EarlyContext<'_>, expr: &Expr) { if in_external_macro(cx.sess(), expr.span) { return; } match expr.kind { ExprKind::Call(ref paren, _) => { if let ExprKind::Paren(ref closure) = paren.kind { if let ExprKind::Closure(_, _, _, ref decl, ref block, _) = closure.kind { let mut visitor = ReturnVisitor::new(); visitor.visit_expr(block); if !visitor.found_return { span_lint_and_then( cx, REDUNDANT_CLOSURE_CALL, expr.span, "Try not to call a closure in the expression where it is declared.", |diag| { if decl.inputs.is_empty() { let mut app = Applicability::MachineApplicable; let hint = snippet_with_applicability(cx, block.span, "..", &mut app).into_owned(); diag.span_suggestion(expr.span, "Try doing something like: ", hint, app); } }, ); } } } }, ExprKind::Unary(UnOp::Neg, ref inner) => { if let ExprKind::Unary(UnOp::Neg, _) = inner.kind { span_lint( cx, DOUBLE_NEG, expr.span, "`--x` could be misinterpreted as pre-decrement by C programmers, is usually a no-op", ); } }, ExprKind::Lit(ref lit) => Self::check_lit(cx, lit), _ => (), } } fn check_block(&mut self, cx: &EarlyContext<'_>, block: &Block) { for w in block.stmts.windows(2) { if_chain! { if let StmtKind::Local(ref local) = w[0].kind; if let Option::Some(ref t) = local.init; if let ExprKind::Closure(..) = t.kind; if let PatKind::Ident(_, ident, _) = local.pat.kind; if let StmtKind::Semi(ref second) = w[1].kind; if let ExprKind::Assign(_, ref call, _) = second.kind; if let ExprKind::Call(ref closure, _) = call.kind; if let ExprKind::Path(_, ref path) = closure.kind; then { if ident == path.segments[0].ident { span_lint( cx, REDUNDANT_CLOSURE_CALL, second.span, "Closure called just once immediately after it was declared", ); } } } } } } impl MiscEarlyLints { fn check_lit(cx: &EarlyContext<'_>, lit: &Lit) { // We test if first character in snippet is a number, because the snippet could be an expansion // from a built-in macro like `line!()` or a proc-macro like `#[wasm_bindgen]`. // Note that this check also covers special case that `line!()` is eagerly expanded by compiler. // See for a regression. // FIXME: Find a better way to detect those cases. let lit_snip = match snippet_opt(cx, lit.span) { Some(snip) if snip.chars().next().map_or(false, |c| c.is_digit(10)) => snip, _ => return, }; if let LitKind::Int(value, lit_int_type) = lit.kind { let suffix = match lit_int_type { LitIntType::Signed(ty) => ty.name_str(), LitIntType::Unsigned(ty) => ty.name_str(), LitIntType::Unsuffixed => "", }; let maybe_last_sep_idx = if let Some(val) = lit_snip.len().checked_sub(suffix.len() + 1) { val } else { return; // It's useless so shouldn't lint. }; // Do not lint when literal is unsuffixed. if !suffix.is_empty() && lit_snip.as_bytes()[maybe_last_sep_idx] != b'_' { span_lint_and_sugg( cx, UNSEPARATED_LITERAL_SUFFIX, lit.span, "integer type suffix should be separated by an underscore", "add an underscore", format!("{}_{}", &lit_snip[..=maybe_last_sep_idx], suffix), Applicability::MachineApplicable, ); } if lit_snip.starts_with("0x") { if maybe_last_sep_idx <= 2 { // It's meaningless or causes range error. return; } let mut seen = (false, false); for ch in lit_snip.as_bytes()[2..=maybe_last_sep_idx].iter() { match ch { b'a'..=b'f' => seen.0 = true, b'A'..=b'F' => seen.1 = true, _ => {}, } if seen.0 && seen.1 { span_lint( cx, MIXED_CASE_HEX_LITERALS, lit.span, "inconsistent casing in hexadecimal literal", ); break; } } } else if lit_snip.starts_with("0b") || lit_snip.starts_with("0o") { /* nothing to do */ } else if value != 0 && lit_snip.starts_with('0') { span_lint_and_then( cx, ZERO_PREFIXED_LITERAL, lit.span, "this is a decimal constant", |diag| { diag.span_suggestion( lit.span, "if you mean to use a decimal constant, remove the `0` to avoid confusion", lit_snip.trim_start_matches(|c| c == '_' || c == '0').to_string(), Applicability::MaybeIncorrect, ); diag.span_suggestion( lit.span, "if you mean to use an octal constant, use `0o`", format!("0o{}", lit_snip.trim_start_matches(|c| c == '_' || c == '0')), Applicability::MaybeIncorrect, ); }, ); } } else if let LitKind::Float(_, LitFloatType::Suffixed(float_ty)) = lit.kind { let suffix = float_ty.name_str(); let maybe_last_sep_idx = if let Some(val) = lit_snip.len().checked_sub(suffix.len() + 1) { val } else { return; // It's useless so shouldn't lint. }; if lit_snip.as_bytes()[maybe_last_sep_idx] != b'_' { span_lint_and_sugg( cx, UNSEPARATED_LITERAL_SUFFIX, lit.span, "float type suffix should be separated by an underscore", "add an underscore", format!("{}_{}", &lit_snip[..=maybe_last_sep_idx], suffix), Applicability::MachineApplicable, ); } } } } fn check_unneeded_wildcard_pattern(cx: &EarlyContext<'_>, pat: &Pat) { if let PatKind::TupleStruct(_, ref patterns) | PatKind::Tuple(ref patterns) = pat.kind { fn span_lint(cx: &EarlyContext<'_>, span: Span, only_one: bool) { span_lint_and_sugg( cx, UNNEEDED_WILDCARD_PATTERN, span, if only_one { "this pattern is unneeded as the `..` pattern can match that element" } else { "these patterns are unneeded as the `..` pattern can match those elements" }, if only_one { "remove it" } else { "remove them" }, "".to_string(), Applicability::MachineApplicable, ); } if let Some(rest_index) = patterns.iter().position(|pat| pat.is_rest()) { if let Some((left_index, left_pat)) = patterns[..rest_index] .iter() .rev() .take_while(|pat| matches!(pat.kind, PatKind::Wild)) .enumerate() .last() { span_lint(cx, left_pat.span.until(patterns[rest_index].span), left_index == 0); } if let Some((right_index, right_pat)) = patterns[rest_index + 1..] .iter() .take_while(|pat| matches!(pat.kind, PatKind::Wild)) .enumerate() .last() { span_lint( cx, patterns[rest_index].span.shrink_to_hi().to(right_pat.span), right_index == 0, ); } } } }