//! calculate cognitive complexity and warn about overly complex functions use rustc::cfg::CFG; use rustc::hir::intravisit::{walk_expr, NestedVisitorMap, Visitor}; use rustc::hir::*; use rustc::lint::{LateContext, LateLintPass, LintArray, LintContext, LintPass}; use rustc::ty; use rustc::{declare_tool_lint, impl_lint_pass}; use syntax::ast::Attribute; use syntax::source_map::Span; use crate::utils::{in_macro, is_allowed, match_type, paths, span_help_and_lint, LimitStack}; declare_clippy_lint! { /// **What it does:** Checks for methods with high cognitive complexity. /// /// **Why is this bad?** Methods of high cognitive complexity tend to be hard to /// both read and maintain. Also LLVM will tend to optimize small methods better. /// /// **Known problems:** Sometimes it's hard to find a way to reduce the /// complexity. /// /// **Example:** No. You'll see it when you get the warning. pub COGNITIVE_COMPLEXITY, complexity, "functions that should be split up into multiple functions" } pub struct CognitiveComplexity { limit: LimitStack, } impl CognitiveComplexity { pub fn new(limit: u64) -> Self { Self { limit: LimitStack::new(limit), } } } impl_lint_pass!(CognitiveComplexity => [COGNITIVE_COMPLEXITY]); impl CognitiveComplexity { fn check<'a, 'tcx: 'a>(&mut self, cx: &'a LateContext<'a, 'tcx>, body: &'tcx Body, span: Span) { if in_macro(span) { return; } let cfg = CFG::new(cx.tcx, body); let expr = &body.value; let n = cfg.graph.len_nodes() as u64; let e = cfg.graph.len_edges() as u64; if e + 2 < n { // the function has unreachable code, other lints should catch this return; } let cc = e + 2 - n; let mut helper = CCHelper { match_arms: 0, divergence: 0, short_circuits: 0, returns: 0, cx, }; helper.visit_expr(expr); let CCHelper { match_arms, divergence, short_circuits, returns, .. } = helper; let ret_ty = cx.tables.node_type(expr.hir_id); let ret_adjust = if match_type(cx, ret_ty, &paths::RESULT) { returns } else { returns / 2 }; if cc + divergence < match_arms + short_circuits { report_cc_bug( cx, cc, match_arms, divergence, short_circuits, ret_adjust, span, body.id().hir_id, ); } else { let mut rust_cc = cc + divergence - match_arms - short_circuits; // prevent degenerate cases where unreachable code contains `return` statements if rust_cc >= ret_adjust { rust_cc -= ret_adjust; } if rust_cc > self.limit.limit() { span_help_and_lint( cx, COGNITIVE_COMPLEXITY, span, &format!("the function has a cognitive complexity of {}", rust_cc), "you could split it up into multiple smaller functions", ); } } } } impl<'a, 'tcx> LateLintPass<'a, 'tcx> for CognitiveComplexity { fn check_fn( &mut self, cx: &LateContext<'a, 'tcx>, _: intravisit::FnKind<'tcx>, _: &'tcx FnDecl, body: &'tcx Body, span: Span, hir_id: HirId, ) { let def_id = cx.tcx.hir().local_def_id_from_hir_id(hir_id); if !cx.tcx.has_attr(def_id, "test") { self.check(cx, body, span); } } fn enter_lint_attrs(&mut self, cx: &LateContext<'a, 'tcx>, attrs: &'tcx [Attribute]) { self.limit.push_attrs(cx.sess(), attrs, "cognitive_complexity"); } fn exit_lint_attrs(&mut self, cx: &LateContext<'a, 'tcx>, attrs: &'tcx [Attribute]) { self.limit.pop_attrs(cx.sess(), attrs, "cognitive_complexity"); } } struct CCHelper<'a, 'tcx: 'a> { match_arms: u64, divergence: u64, returns: u64, short_circuits: u64, // && and || cx: &'a LateContext<'a, 'tcx>, } impl<'a, 'tcx> Visitor<'tcx> for CCHelper<'a, 'tcx> { fn visit_expr(&mut self, e: &'tcx Expr) { match e.node { ExprKind::Match(_, ref arms, _) => { walk_expr(self, e); let arms_n: u64 = arms.iter().map(|arm| arm.pats.len() as u64).sum(); if arms_n > 1 { self.match_arms += arms_n - 2; } }, ExprKind::Call(ref callee, _) => { walk_expr(self, e); let ty = self.cx.tables.node_type(callee.hir_id); match ty.sty { ty::FnDef(..) | ty::FnPtr(_) => { let sig = ty.fn_sig(self.cx.tcx); if sig.skip_binder().output().sty == ty::Never { self.divergence += 1; } }, _ => (), } }, ExprKind::Closure(.., _) => (), ExprKind::Binary(op, _, _) => { walk_expr(self, e); match op.node { BinOpKind::And | BinOpKind::Or => self.short_circuits += 1, _ => (), } }, ExprKind::Ret(_) => self.returns += 1, _ => walk_expr(self, e), } } fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> { NestedVisitorMap::None } } #[cfg(feature = "debugging")] #[allow(clippy::too_many_arguments)] fn report_cc_bug( _: &LateContext<'_, '_>, cc: u64, narms: u64, div: u64, shorts: u64, returns: u64, span: Span, _: HirId, ) { span_bug!( span, "Clippy encountered a bug calculating cognitive complexity: cc = {}, arms = {}, \ div = {}, shorts = {}, returns = {}. Please file a bug report.", cc, narms, div, shorts, returns ); } #[cfg(not(feature = "debugging"))] #[allow(clippy::too_many_arguments)] fn report_cc_bug( cx: &LateContext<'_, '_>, cc: u64, narms: u64, div: u64, shorts: u64, returns: u64, span: Span, id: HirId, ) { if !is_allowed(cx, COGNITIVE_COMPLEXITY, id) { cx.sess().span_note_without_error( span, &format!( "Clippy encountered a bug calculating cognitive complexity \ (hide this message with `#[allow(cognitive_complexity)]`): \ cc = {}, arms = {}, div = {}, shorts = {}, returns = {}. \ Please file a bug report.", cc, narms, div, shorts, returns ), ); } }