use clippy_utils::consts::{constant_full_int, constant_simple, Constant, FullInt}; use clippy_utils::diagnostics::span_lint_and_sugg; use clippy_utils::source::snippet_with_applicability; use clippy_utils::{clip, unsext}; use rustc_errors::Applicability; use rustc_hir::{BinOp, BinOpKind, Expr, ExprKind, Node}; use rustc_lint::{LateContext, LateLintPass}; use rustc_middle::ty; use rustc_session::{declare_lint_pass, declare_tool_lint}; use rustc_span::source_map::Span; declare_clippy_lint! { /// ### What it does /// Checks for identity operations, e.g., `x + 0`. /// /// ### Why is this bad? /// This code can be removed without changing the /// meaning. So it just obscures what's going on. Delete it mercilessly. /// /// ### Example /// ```rust /// # let x = 1; /// x / 1 + 0 * 1 - 0 | 0; /// ``` #[clippy::version = "pre 1.29.0"] pub IDENTITY_OP, complexity, "using identity operations, e.g., `x + 0` or `y / 1`" } declare_lint_pass!(IdentityOp => [IDENTITY_OP]); impl<'tcx> LateLintPass<'tcx> for IdentityOp { fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) { if expr.span.from_expansion() { return; } if let ExprKind::Binary(cmp, left, right) = &expr.kind { if !is_allowed(cx, *cmp, left, right) { match cmp.node { BinOpKind::Add | BinOpKind::BitOr | BinOpKind::BitXor => { check(cx, left, 0, expr.span, right.span, needs_parenthesis(cx, expr, right)); check(cx, right, 0, expr.span, left.span, Parens::Unneeded); }, BinOpKind::Shl | BinOpKind::Shr | BinOpKind::Sub => { check(cx, right, 0, expr.span, left.span, Parens::Unneeded); }, BinOpKind::Mul => { check(cx, left, 1, expr.span, right.span, needs_parenthesis(cx, expr, right)); check(cx, right, 1, expr.span, left.span, Parens::Unneeded); }, BinOpKind::Div => check(cx, right, 1, expr.span, left.span, Parens::Unneeded), BinOpKind::BitAnd => { check(cx, left, -1, expr.span, right.span, needs_parenthesis(cx, expr, right)); check(cx, right, -1, expr.span, left.span, Parens::Unneeded); }, BinOpKind::Rem => check_remainder(cx, left, right, expr.span, left.span), _ => (), } } } } } #[derive(Copy, Clone)] enum Parens { Needed, Unneeded, } /// Checks if `left op right` needs parenthesis when reduced to `right` /// e.g. `0 + if b { 1 } else { 2 } + if b { 3 } else { 4 }` cannot be reduced /// to `if b { 1 } else { 2 } + if b { 3 } else { 4 }` where the `if` could be /// interpreted as a statement /// /// See #8724 fn needs_parenthesis(cx: &LateContext<'_>, binary: &Expr<'_>, right: &Expr<'_>) -> Parens { match right.kind { ExprKind::Binary(_, lhs, _) | ExprKind::Cast(lhs, _) => { // ensure we're checking against the leftmost expression of `right` // // ~~~ `lhs` // 0 + {4} * 2 // ~~~~~~~ `right` return needs_parenthesis(cx, binary, lhs); }, ExprKind::If(..) | ExprKind::Match(..) | ExprKind::Block(..) | ExprKind::Loop(..) => {}, _ => return Parens::Unneeded, } let mut prev_id = binary.hir_id; for (_, node) in cx.tcx.hir().parent_iter(binary.hir_id) { if let Node::Expr(expr) = node && let ExprKind::Binary(_, lhs, _) | ExprKind::Cast(lhs, _) = expr.kind && lhs.hir_id == prev_id { // keep going until we find a node that encompasses left of `binary` prev_id = expr.hir_id; continue; } match node { Node::Block(_) | Node::Stmt(_) => break, _ => return Parens::Unneeded, }; } Parens::Needed } fn is_allowed(cx: &LateContext<'_>, cmp: BinOp, left: &Expr<'_>, right: &Expr<'_>) -> bool { // This lint applies to integers !cx.typeck_results().expr_ty(left).peel_refs().is_integral() || !cx.typeck_results().expr_ty(right).peel_refs().is_integral() // `1 << 0` is a common pattern in bit manipulation code || (cmp.node == BinOpKind::Shl && constant_simple(cx, cx.typeck_results(), right) == Some(Constant::Int(0)) && constant_simple(cx, cx.typeck_results(), left) == Some(Constant::Int(1))) } fn check_remainder(cx: &LateContext<'_>, left: &Expr<'_>, right: &Expr<'_>, span: Span, arg: Span) { let lhs_const = constant_full_int(cx, cx.typeck_results(), left); let rhs_const = constant_full_int(cx, cx.typeck_results(), right); if match (lhs_const, rhs_const) { (Some(FullInt::S(lv)), Some(FullInt::S(rv))) => lv.abs() < rv.abs(), (Some(FullInt::U(lv)), Some(FullInt::U(rv))) => lv < rv, _ => return, } { span_ineffective_operation(cx, span, arg, Parens::Unneeded); } } fn check(cx: &LateContext<'_>, e: &Expr<'_>, m: i8, span: Span, arg: Span, parens: Parens) { if let Some(Constant::Int(v)) = constant_simple(cx, cx.typeck_results(), e).map(Constant::peel_refs) { let check = match *cx.typeck_results().expr_ty(e).peel_refs().kind() { ty::Int(ity) => unsext(cx.tcx, -1_i128, ity), ty::Uint(uty) => clip(cx.tcx, !0, uty), _ => return, }; if match m { 0 => v == 0, -1 => v == check, 1 => v == 1, _ => unreachable!(), } { span_ineffective_operation(cx, span, arg, parens); } } } fn span_ineffective_operation(cx: &LateContext<'_>, span: Span, arg: Span, parens: Parens) { let mut applicability = Applicability::MachineApplicable; let expr_snippet = snippet_with_applicability(cx, arg, "..", &mut applicability); let suggestion = match parens { Parens::Needed => format!("({expr_snippet})"), Parens::Unneeded => expr_snippet.into_owned(), }; span_lint_and_sugg( cx, IDENTITY_OP, span, "this operation has no effect", "consider reducing it to", suggestion, applicability, ); }