//! Lints concerned with the grouping of digits with underscores in integral or //! floating-point literal expressions. use rustc::lint::*; use syntax::ast::*; use syntax_pos; use utils::{in_external_macro, snippet_opt, span_lint_and_sugg}; /// **What it does:** Warns if a long integral or floating-point constant does /// not contain underscores. /// /// **Why is this bad?** Reading long numbers is difficult without separators. /// /// **Known problems:** None. /// /// **Example:** /// /// ```rust /// 61864918973511 /// ``` declare_lint! { pub UNREADABLE_LITERAL, Warn, "long integer literal without underscores" } /// **What it does:** Warns if an integral or floating-point constant is /// grouped inconsistently with underscores. /// /// **Why is this bad?** Readers may incorrectly interpret inconsistently /// grouped digits. /// /// **Known problems:** None. /// /// **Example:** /// /// ```rust /// 618_64_9189_73_511 /// ``` declare_lint! { pub INCONSISTENT_DIGIT_GROUPING, Warn, "integer literals with digits grouped inconsistently" } /// **What it does:** Warns if the digits of an integral or floating-point /// constant are grouped into groups that /// are too large. /// /// **Why is this bad?** Negatively impacts readability. /// /// **Known problems:** None. /// /// **Example:** /// /// ```rust /// 6186491_8973511 /// ``` declare_lint! { pub LARGE_DIGIT_GROUPS, Warn, "grouping digits into groups that are too large" } /// **What it does:** Warns if there is a better representation for a numeric literal. /// /// **Why is this bad?** Especially for big powers of 2 a hexadecimal representation is more /// readable than a decimal representation. /// /// **Known problems:** None. /// /// **Example:** /// /// `255` => `0xFF` /// `65_535` => `0xFFFF` /// `4_042_322_160` => `0xF0F0_F0F0` declare_restriction_lint! { pub DECIMAL_LITERAL_REPRESENTATION, "using decimal representation when hexadecimal would be better" } #[derive(Debug, PartialEq)] enum Radix { Binary, Octal, Decimal, Hexadecimal, } impl Radix { /// Return a reasonable digit group size for this radix. pub fn suggest_grouping(&self) -> usize { match *self { Radix::Binary | Radix::Hexadecimal => 4, Radix::Octal | Radix::Decimal => 3, } } } #[derive(Debug)] struct DigitInfo<'a> { /// Characters of a literal between the radix prefix and type suffix. pub digits: &'a str, /// Which radix the literal was represented in. pub radix: Radix, /// The radix prefix, if present. pub prefix: Option<&'a str>, /// The type suffix, including preceding underscore if present. pub suffix: Option<&'a str>, /// True for floating-point literals. pub float: bool, } impl<'a> DigitInfo<'a> { pub fn new(lit: &'a str, float: bool) -> Self { // Determine delimiter for radix prefix, if present, and radix. let radix = if lit.starts_with("0x") { Radix::Hexadecimal } else if lit.starts_with("0b") { Radix::Binary } else if lit.starts_with("0o") { Radix::Octal } else { Radix::Decimal }; // Grab part of the literal after prefix, if present. let (prefix, sans_prefix) = if let Radix::Decimal = radix { (None, lit) } else { let (p, s) = lit.split_at(2); (Some(p), s) }; let mut last_d = '\0'; for (d_idx, d) in sans_prefix.char_indices() { if !float && (d == 'i' || d == 'u') || float && (d == 'f' || d == 'e' || d == 'E') { let suffix_start = if last_d == '_' { d_idx - 1 } else { d_idx }; let (digits, suffix) = sans_prefix.split_at(suffix_start); return Self { digits: digits, radix: radix, prefix: prefix, suffix: Some(suffix), float: float, }; } last_d = d } // No suffix found Self { digits: sans_prefix, radix: radix, prefix: prefix, suffix: None, float: float, } } /// Returns digits grouped in a sensible way. fn grouping_hint(&self) -> String { let group_size = self.radix.suggest_grouping(); if self.digits.contains('.') { let mut parts = self.digits.split('.'); let int_part_hint = parts .next() .expect("split always returns at least one element") .chars() .rev() .filter(|&c| c != '_') .collect::>() .chunks(group_size) .map(|chunk| chunk.into_iter().rev().collect()) .rev() .collect::>() .join("_"); let frac_part_hint = parts .next() .expect("already checked that there is a `.`") .chars() .filter(|&c| c != '_') .collect::>() .chunks(group_size) .map(|chunk| chunk.into_iter().collect()) .collect::>() .join("_"); format!( "{}.{}{}", int_part_hint, frac_part_hint, self.suffix.unwrap_or("") ) } else { let hint = self.digits .chars() .rev() .filter(|&c| c != '_') .collect::>() .chunks(group_size) .map(|chunk| chunk.into_iter().rev().collect()) .rev() .collect::>() .join("_"); format!( "{}{}{}", self.prefix.unwrap_or(""), hint, self.suffix.unwrap_or("") ) } } } enum WarningType { UnreadableLiteral, InconsistentDigitGrouping, LargeDigitGroups, DecimalRepresentation, } impl WarningType { pub fn display(&self, grouping_hint: &str, cx: &EarlyContext, span: &syntax_pos::Span) { match *self { WarningType::UnreadableLiteral => span_lint_and_sugg( cx, UNREADABLE_LITERAL, *span, "long literal lacking separators", "consider", grouping_hint.to_owned(), ), WarningType::LargeDigitGroups => span_lint_and_sugg( cx, LARGE_DIGIT_GROUPS, *span, "digit groups should be smaller", "consider", grouping_hint.to_owned(), ), WarningType::InconsistentDigitGrouping => span_lint_and_sugg( cx, INCONSISTENT_DIGIT_GROUPING, *span, "digits grouped inconsistently by underscores", "consider", grouping_hint.to_owned(), ), WarningType::DecimalRepresentation => span_lint_and_sugg( cx, DECIMAL_LITERAL_REPRESENTATION, *span, "integer literal has a better hexadecimal representation", "consider", grouping_hint.to_owned(), ), }; } } #[derive(Copy, Clone)] pub struct LiteralDigitGrouping; impl LintPass for LiteralDigitGrouping { fn get_lints(&self) -> LintArray { lint_array!( UNREADABLE_LITERAL, INCONSISTENT_DIGIT_GROUPING, LARGE_DIGIT_GROUPS ) } } impl EarlyLintPass for LiteralDigitGrouping { fn check_expr(&mut self, cx: &EarlyContext, expr: &Expr) { if in_external_macro(cx, expr.span) { return; } if let ExprKind::Lit(ref lit) = expr.node { self.check_lit(cx, lit) } } } impl LiteralDigitGrouping { fn check_lit(&self, cx: &EarlyContext, lit: &Lit) { match lit.node { LitKind::Int(..) => { // Lint integral literals. if_chain! { if let Some(src) = snippet_opt(cx, lit.span); if let Some(firstch) = src.chars().next(); if char::to_digit(firstch, 10).is_some(); then { let digit_info = DigitInfo::new(&src, false); let _ = Self::do_lint(digit_info.digits).map_err(|warning_type| { warning_type.display(&digit_info.grouping_hint(), cx, &lit.span) }); } } }, LitKind::Float(..) | LitKind::FloatUnsuffixed(..) => { // Lint floating-point literals. if_chain! { if let Some(src) = snippet_opt(cx, lit.span); if let Some(firstch) = src.chars().next(); if char::to_digit(firstch, 10).is_some(); then { let digit_info = DigitInfo::new(&src, true); // Separate digits into integral and fractional parts. let parts: Vec<&str> = digit_info .digits .split_terminator('.') .collect(); // Lint integral and fractional parts separately, and then check consistency of digit // groups if both pass. let _ = Self::do_lint(parts[0]) .map(|integral_group_size| { if parts.len() > 1 { // Lint the fractional part of literal just like integral part, but reversed. let fractional_part = &parts[1].chars().rev().collect::(); let _ = Self::do_lint(fractional_part) .map(|fractional_group_size| { let consistent = Self::parts_consistent(integral_group_size, fractional_group_size, parts[0].len(), parts[1].len()); if !consistent { WarningType::InconsistentDigitGrouping.display(&digit_info.grouping_hint(), cx, &lit.span); } }) .map_err(|warning_type| warning_type.display(&digit_info.grouping_hint(), cx, &lit.span)); } }) .map_err(|warning_type| warning_type.display(&digit_info.grouping_hint(), cx, &lit.span)); } } }, _ => (), } } /// Given the sizes of the digit groups of both integral and fractional /// parts, and the length /// of both parts, determine if the digits have been grouped consistently. fn parts_consistent(int_group_size: usize, frac_group_size: usize, int_size: usize, frac_size: usize) -> bool { match (int_group_size, frac_group_size) { // No groups on either side of decimal point - trivially consistent. (0, 0) => true, // Integral part has grouped digits, fractional part does not. (_, 0) => frac_size <= int_group_size, // Fractional part has grouped digits, integral part does not. (0, _) => int_size <= frac_group_size, // Both parts have grouped digits. Groups should be the same size. (_, _) => int_group_size == frac_group_size, } } /// Performs lint on `digits` (no decimal point) and returns the group /// size on success or `WarningType` when emitting a warning. fn do_lint(digits: &str) -> Result { // Grab underscore indices with respect to the units digit. let underscore_positions: Vec = digits .chars() .rev() .enumerate() .filter_map(|(idx, digit)| if digit == '_' { Some(idx) } else { None }) .collect(); if underscore_positions.is_empty() { // Check if literal needs underscores. if digits.len() > 5 { Err(WarningType::UnreadableLiteral) } else { Ok(0) } } else { // Check consistency and the sizes of the groups. let group_size = underscore_positions[0]; let consistent = underscore_positions .windows(2) .all(|ps| ps[1] - ps[0] == group_size + 1) // number of digits to the left of the last group cannot be bigger than group size. && (digits.len() - underscore_positions.last() .expect("there's at least one element") <= group_size + 1); if !consistent { return Err(WarningType::InconsistentDigitGrouping); } else if group_size > 4 { return Err(WarningType::LargeDigitGroups); } Ok(group_size) } } } #[derive(Copy, Clone)] pub struct LiteralRepresentation { threshold: u64, } impl LintPass for LiteralRepresentation { fn get_lints(&self) -> LintArray { lint_array!(DECIMAL_LITERAL_REPRESENTATION) } } impl EarlyLintPass for LiteralRepresentation { fn check_expr(&mut self, cx: &EarlyContext, expr: &Expr) { if in_external_macro(cx, expr.span) { return; } if let ExprKind::Lit(ref lit) = expr.node { self.check_lit(cx, lit) } } } impl LiteralRepresentation { pub fn new(threshold: u64) -> Self { Self { threshold: threshold, } } fn check_lit(&self, cx: &EarlyContext, lit: &Lit) { // Lint integral literals. if_chain! { if let LitKind::Int(..) = lit.node; if let Some(src) = snippet_opt(cx, lit.span); if let Some(firstch) = src.chars().next(); if char::to_digit(firstch, 10).is_some(); then { let digit_info = DigitInfo::new(&src, false); if digit_info.radix == Radix::Decimal { let val = digit_info.digits .chars() .filter(|&c| c != '_') .collect::() .parse::().unwrap(); if val < self.threshold as u128 { return } let hex = format!("{:#X}", val); let digit_info = DigitInfo::new(&hex[..], false); let _ = Self::do_lint(digit_info.digits).map_err(|warning_type| { warning_type.display(&digit_info.grouping_hint(), cx, &lit.span) }); } } } } fn do_lint(digits: &str) -> Result<(), WarningType> { if digits.len() == 1 { // Lint for 1 digit literals, if someone really sets the threshold that low if digits == "1" || digits == "2" || digits == "4" || digits == "8" || digits == "3" || digits == "7" || digits == "F" { return Err(WarningType::DecimalRepresentation); } } else if digits.len() < 4 { // Lint for Literals with a hex-representation of 2 or 3 digits let f = &digits[0..1]; // first digit let s = &digits[1..]; // suffix // Powers of 2 if ((f.eq("1") || f.eq("2") || f.eq("4") || f.eq("8")) && s.chars().all(|c| c == '0')) // Powers of 2 minus 1 || ((f.eq("1") || f.eq("3") || f.eq("7") || f.eq("F")) && s.chars().all(|c| c == 'F')) { return Err(WarningType::DecimalRepresentation); } } else { // Lint for Literals with a hex-representation of 4 digits or more let f = &digits[0..1]; // first digit let m = &digits[1..digits.len() - 1]; // middle digits, except last let s = &digits[1..]; // suffix // Powers of 2 with a margin of +15/-16 if ((f.eq("1") || f.eq("2") || f.eq("4") || f.eq("8")) && m.chars().all(|c| c == '0')) || ((f.eq("1") || f.eq("3") || f.eq("7") || f.eq("F")) && m.chars().all(|c| c == 'F')) // Lint for representations with only 0s and Fs, while allowing 7 as the first // digit || ((f.eq("7") || f.eq("F")) && s.chars().all(|c| c == '0' || c == 'F')) { return Err(WarningType::DecimalRepresentation); } } Ok(()) } }