use crate::utils::{get_item_name, snippet_with_applicability, span_lint, span_lint_and_sugg}; use rustc_ast::ast::LitKind; use rustc_data_structures::fx::FxHashSet; use rustc_errors::Applicability; use rustc_hir::def_id::DefId; use rustc_hir::{AssocItemKind, BinOpKind, Expr, ExprKind, ImplItemRef, Item, ItemKind, TraitItemRef}; use rustc_lint::{LateContext, LateLintPass}; use rustc_middle::ty; use rustc_session::{declare_lint_pass, declare_tool_lint}; use rustc_span::source_map::{Span, Spanned, Symbol}; declare_clippy_lint! { /// **What it does:** Checks for getting the length of something via `.len()` /// just to compare to zero, and suggests using `.is_empty()` where applicable. /// /// **Why is this bad?** Some structures can answer `.is_empty()` much faster /// than calculating their length. So it is good to get into the habit of using /// `.is_empty()`, and having it is cheap. /// Besides, it makes the intent clearer than a manual comparison in some contexts. /// /// **Known problems:** None. /// /// **Example:** /// ```ignore /// if x.len() == 0 { /// .. /// } /// if y.len() != 0 { /// .. /// } /// ``` /// instead use /// ```ignore /// if x.is_empty() { /// .. /// } /// if !y.is_empty() { /// .. /// } /// ``` pub LEN_ZERO, style, "checking `.len() == 0` or `.len() > 0` (or similar) when `.is_empty()` could be used instead" } declare_clippy_lint! { /// **What it does:** Checks for items that implement `.len()` but not /// `.is_empty()`. /// /// **Why is this bad?** It is good custom to have both methods, because for /// some data structures, asking about the length will be a costly operation, /// whereas `.is_empty()` can usually answer in constant time. Also it used to /// lead to false positives on the [`len_zero`](#len_zero) lint – currently that /// lint will ignore such entities. /// /// **Known problems:** None. /// /// **Example:** /// ```ignore /// impl X { /// pub fn len(&self) -> usize { /// .. /// } /// } /// ``` pub LEN_WITHOUT_IS_EMPTY, style, "traits or impls with a public `len` method but no corresponding `is_empty` method" } declare_clippy_lint! { /// **What it does:** Checks for comparing to an empty slice such as "" or [],` /// and suggests using `.is_empty()` where applicable. /// /// **Why is this bad?** Some structures can answer `.is_empty()` much faster /// than checking for equality. So it is good to get into the habit of using /// `.is_empty()`, and having it is cheap. /// Besides, it makes the intent clearer than a manual comparison in some contexts. /// /// **Known problems:** None. /// /// **Example:** /// /// ```ignore /// if s == "" { /// .. /// } /// /// if arr == [] { /// .. /// } /// ``` /// Use instead: /// ```ignore /// if s.is_empty() { /// .. /// } /// /// if arr.is_empty() { /// .. /// } /// ``` pub COMPARISON_TO_EMPTY, style, "checking `x == \"\"` or `x == []` (or similar) when `.is_empty()` could be used instead" } declare_lint_pass!(LenZero => [LEN_ZERO, LEN_WITHOUT_IS_EMPTY, COMPARISON_TO_EMPTY]); impl<'tcx> LateLintPass<'tcx> for LenZero { fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx Item<'_>) { if item.span.from_expansion() { return; } match item.kind { ItemKind::Trait(_, _, _, _, ref trait_items) => check_trait_items(cx, item, trait_items), ItemKind::Impl { of_trait: None, items: ref impl_items, .. } => check_impl_items(cx, item, impl_items), _ => (), } } fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) { if expr.span.from_expansion() { return; } if let ExprKind::Binary(Spanned { node: cmp, .. }, ref left, ref right) = expr.kind { match cmp { BinOpKind::Eq => { check_cmp(cx, expr.span, left, right, "", 0); // len == 0 check_cmp(cx, expr.span, right, left, "", 0); // 0 == len }, BinOpKind::Ne => { check_cmp(cx, expr.span, left, right, "!", 0); // len != 0 check_cmp(cx, expr.span, right, left, "!", 0); // 0 != len }, BinOpKind::Gt => { check_cmp(cx, expr.span, left, right, "!", 0); // len > 0 check_cmp(cx, expr.span, right, left, "", 1); // 1 > len }, BinOpKind::Lt => { check_cmp(cx, expr.span, left, right, "", 1); // len < 1 check_cmp(cx, expr.span, right, left, "!", 0); // 0 < len }, BinOpKind::Ge => check_cmp(cx, expr.span, left, right, "!", 1), // len >= 1 BinOpKind::Le => check_cmp(cx, expr.span, right, left, "!", 1), // 1 <= len _ => (), } } } } fn check_trait_items(cx: &LateContext<'_>, visited_trait: &Item<'_>, trait_items: &[TraitItemRef]) { fn is_named_self(cx: &LateContext<'_>, item: &TraitItemRef, name: &str) -> bool { item.ident.name.as_str() == name && if let AssocItemKind::Fn { has_self } = item.kind { has_self && { let did = cx.tcx.hir().local_def_id(item.id.hir_id); cx.tcx.fn_sig(did).inputs().skip_binder().len() == 1 } } else { false } } // fill the set with current and super traits fn fill_trait_set(traitt: DefId, set: &mut FxHashSet, cx: &LateContext<'_>) { if set.insert(traitt) { for supertrait in rustc_trait_selection::traits::supertrait_def_ids(cx.tcx, traitt) { fill_trait_set(supertrait, set, cx); } } } if cx.access_levels.is_exported(visited_trait.hir_id) && trait_items.iter().any(|i| is_named_self(cx, i, "len")) { let mut current_and_super_traits = FxHashSet::default(); let visited_trait_def_id = cx.tcx.hir().local_def_id(visited_trait.hir_id); fill_trait_set(visited_trait_def_id.to_def_id(), &mut current_and_super_traits, cx); let is_empty_method_found = current_and_super_traits .iter() .flat_map(|&i| cx.tcx.associated_items(i).in_definition_order()) .any(|i| { i.kind == ty::AssocKind::Fn && i.fn_has_self_parameter && i.ident.name == sym!(is_empty) && cx.tcx.fn_sig(i.def_id).inputs().skip_binder().len() == 1 }); if !is_empty_method_found { span_lint( cx, LEN_WITHOUT_IS_EMPTY, visited_trait.span, &format!( "trait `{}` has a `len` method but no (possibly inherited) `is_empty` method", visited_trait.ident.name ), ); } } } fn check_impl_items(cx: &LateContext<'_>, item: &Item<'_>, impl_items: &[ImplItemRef<'_>]) { fn is_named_self(cx: &LateContext<'_>, item: &ImplItemRef<'_>, name: &str) -> bool { item.ident.name.as_str() == name && if let AssocItemKind::Fn { has_self } = item.kind { has_self && { let did = cx.tcx.hir().local_def_id(item.id.hir_id); cx.tcx.fn_sig(did).inputs().skip_binder().len() == 1 } } else { false } } let is_empty = if let Some(is_empty) = impl_items.iter().find(|i| is_named_self(cx, i, "is_empty")) { if cx.access_levels.is_exported(is_empty.id.hir_id) { return; } else { "a private" } } else { "no corresponding" }; if let Some(i) = impl_items.iter().find(|i| is_named_self(cx, i, "len")) { if cx.access_levels.is_exported(i.id.hir_id) { let def_id = cx.tcx.hir().local_def_id(item.hir_id); let ty = cx.tcx.type_of(def_id); span_lint( cx, LEN_WITHOUT_IS_EMPTY, item.span, &format!( "item `{}` has a public `len` method but {} `is_empty` method", ty, is_empty ), ); } } } fn check_cmp(cx: &LateContext<'_>, span: Span, method: &Expr<'_>, lit: &Expr<'_>, op: &str, compare_to: u32) { if let (&ExprKind::MethodCall(ref method_path, _, ref args, _), &ExprKind::Lit(ref lit)) = (&method.kind, &lit.kind) { // check if we are in an is_empty() method if let Some(name) = get_item_name(cx, method) { if name.as_str() == "is_empty" { return; } } check_len(cx, span, method_path.ident.name, args, &lit.node, op, compare_to) } else { check_empty_expr(cx, span, method, lit, op) } } fn check_len( cx: &LateContext<'_>, span: Span, method_name: Symbol, args: &[Expr<'_>], lit: &LitKind, op: &str, compare_to: u32, ) { if let LitKind::Int(lit, _) = *lit { // check if length is compared to the specified number if lit != u128::from(compare_to) { return; } if method_name.as_str() == "len" && args.len() == 1 && has_is_empty(cx, &args[0]) { let mut applicability = Applicability::MachineApplicable; span_lint_and_sugg( cx, LEN_ZERO, span, &format!("length comparison to {}", if compare_to == 0 { "zero" } else { "one" }), &format!("using `{}is_empty` is clearer and more explicit", op), format!( "{}{}.is_empty()", op, snippet_with_applicability(cx, args[0].span, "_", &mut applicability) ), applicability, ); } } } fn check_empty_expr(cx: &LateContext<'_>, span: Span, lit1: &Expr<'_>, lit2: &Expr<'_>, op: &str) { if (is_empty_array(lit2) || is_empty_string(lit2)) && has_is_empty(cx, lit1) { let mut applicability = Applicability::MachineApplicable; span_lint_and_sugg( cx, COMPARISON_TO_EMPTY, span, "comparison to empty slice", &format!("using `{}is_empty` is clearer and more explicit", op), format!( "{}{}.is_empty()", op, snippet_with_applicability(cx, lit1.span, "_", &mut applicability) ), applicability, ); } } fn is_empty_string(expr: &Expr<'_>) -> bool { if let ExprKind::Lit(ref lit) = expr.kind { if let LitKind::Str(lit, _) = lit.node { let lit = lit.as_str(); return lit == ""; } } false } fn is_empty_array(expr: &Expr<'_>) -> bool { if let ExprKind::Array(ref arr) = expr.kind { return arr.is_empty(); } false } /// Checks if this type has an `is_empty` method. fn has_is_empty(cx: &LateContext<'_>, expr: &Expr<'_>) -> bool { /// Gets an `AssocItem` and return true if it matches `is_empty(self)`. fn is_is_empty(cx: &LateContext<'_>, item: &ty::AssocItem) -> bool { if let ty::AssocKind::Fn = item.kind { if item.ident.name.as_str() == "is_empty" { let sig = cx.tcx.fn_sig(item.def_id); let ty = sig.skip_binder(); ty.inputs().len() == 1 } else { false } } else { false } } /// Checks the inherent impl's items for an `is_empty(self)` method. fn has_is_empty_impl(cx: &LateContext<'_>, id: DefId) -> bool { cx.tcx.inherent_impls(id).iter().any(|imp| { cx.tcx .associated_items(*imp) .in_definition_order() .any(|item| is_is_empty(cx, &item)) }) } let ty = &cx.typeck_results().expr_ty(expr).peel_refs(); match ty.kind() { ty::Dynamic(ref tt, ..) => tt.principal().map_or(false, |principal| { cx.tcx .associated_items(principal.def_id()) .in_definition_order() .any(|item| is_is_empty(cx, &item)) }), ty::Projection(ref proj) => has_is_empty_impl(cx, proj.item_def_id), ty::Adt(id, _) => has_is_empty_impl(cx, id.did), ty::Array(..) | ty::Slice(..) | ty::Str => true, _ => false, } }