#![allow(cast_possible_truncation)] use rustc::lint::LateContext; use rustc::hir::def::Def; use rustc_const_eval::lookup_const_by_id; use rustc_const_math::ConstInt; use rustc::hir::*; use rustc::ty::{self, TyCtxt}; use rustc::ty::subst::{Substs, Subst}; use std::cmp::Ordering::{self, Equal}; use std::cmp::PartialOrd; use std::hash::{Hash, Hasher}; use std::mem; use std::rc::Rc; use syntax::ast::{FloatTy, LitKind, StrStyle, NodeId}; use syntax::ptr::P; #[derive(Debug, Copy, Clone)] pub enum FloatWidth { F32, F64, Any, } impl From for FloatWidth { fn from(ty: FloatTy) -> FloatWidth { match ty { FloatTy::F32 => FloatWidth::F32, FloatTy::F64 => FloatWidth::F64, } } } /// A `LitKind`-like enum to fold constant `Expr`s into. #[derive(Debug, Clone)] pub enum Constant { /// a String "abc" Str(String, StrStyle), /// a Binary String b"abc" Binary(Rc>), /// a single char 'a' Char(char), /// an integer, third argument is whether the value is negated Int(ConstInt), /// a float with given type Float(String, FloatWidth), /// true or false Bool(bool), /// an array of constants Vec(Vec), /// also an array, but with only one constant, repeated N times Repeat(Box, usize), /// a tuple of constants Tuple(Vec), } impl PartialEq for Constant { fn eq(&self, other: &Constant) -> bool { match (self, other) { (&Constant::Str(ref ls, ref l_sty), &Constant::Str(ref rs, ref r_sty)) => ls == rs && l_sty == r_sty, (&Constant::Binary(ref l), &Constant::Binary(ref r)) => l == r, (&Constant::Char(l), &Constant::Char(r)) => l == r, (&Constant::Int(l), &Constant::Int(r)) => { l.is_negative() == r.is_negative() && l.to_u128_unchecked() == r.to_u128_unchecked() }, (&Constant::Float(ref ls, _), &Constant::Float(ref rs, _)) => { // we want `Fw32 == FwAny` and `FwAny == Fw64`, by transitivity we must have // `Fw32 == Fw64` so don’t compare them match (ls.parse::(), rs.parse::()) { // mem::transmute is required to catch non-matching 0.0, -0.0, and NaNs (Ok(l), Ok(r)) => unsafe { mem::transmute::(l) == mem::transmute::(r) }, _ => false, } }, (&Constant::Bool(l), &Constant::Bool(r)) => l == r, (&Constant::Vec(ref l), &Constant::Vec(ref r)) => l == r, (&Constant::Repeat(ref lv, ref ls), &Constant::Repeat(ref rv, ref rs)) => ls == rs && lv == rv, (&Constant::Tuple(ref l), &Constant::Tuple(ref r)) => l == r, _ => false, //TODO: Are there inter-type equalities? } } } impl Hash for Constant { fn hash(&self, state: &mut H) where H: Hasher { match *self { Constant::Str(ref s, ref k) => { s.hash(state); k.hash(state); }, Constant::Binary(ref b) => { b.hash(state); }, Constant::Char(c) => { c.hash(state); }, Constant::Int(i) => { i.to_u128_unchecked().hash(state); i.is_negative().hash(state); }, Constant::Float(ref f, _) => { // don’t use the width here because of PartialEq implementation if let Ok(f) = f.parse::() { unsafe { mem::transmute::(f) }.hash(state); } }, Constant::Bool(b) => { b.hash(state); }, Constant::Vec(ref v) | Constant::Tuple(ref v) => { v.hash(state); }, Constant::Repeat(ref c, l) => { c.hash(state); l.hash(state); }, } } } impl PartialOrd for Constant { fn partial_cmp(&self, other: &Constant) -> Option { match (self, other) { (&Constant::Str(ref ls, ref l_sty), &Constant::Str(ref rs, ref r_sty)) => { if l_sty == r_sty { Some(ls.cmp(rs)) } else { None } }, (&Constant::Char(ref l), &Constant::Char(ref r)) => Some(l.cmp(r)), (&Constant::Int(l), &Constant::Int(r)) => Some(l.cmp(&r)), (&Constant::Float(ref ls, _), &Constant::Float(ref rs, _)) => { match (ls.parse::(), rs.parse::()) { (Ok(ref l), Ok(ref r)) => { match (l.partial_cmp(r), l.is_sign_positive() == r.is_sign_positive()) { // Check for comparison of -0.0 and 0.0 (Some(Ordering::Equal), false) => None, (x, _) => x, } }, _ => None, } }, (&Constant::Bool(ref l), &Constant::Bool(ref r)) => Some(l.cmp(r)), (&Constant::Tuple(ref l), &Constant::Tuple(ref r)) | (&Constant::Vec(ref l), &Constant::Vec(ref r)) => l.partial_cmp(r), (&Constant::Repeat(ref lv, ref ls), &Constant::Repeat(ref rv, ref rs)) => { match lv.partial_cmp(rv) { Some(Equal) => Some(ls.cmp(rs)), x => x, } }, _ => None, //TODO: Are there any useful inter-type orderings? } } } /// parse a `LitKind` to a `Constant` #[allow(cast_possible_wrap)] pub fn lit_to_constant<'a, 'tcx>(lit: &LitKind, tcx: TyCtxt<'a, 'tcx, 'tcx>, mut ty: ty::Ty<'tcx>) -> Constant { use syntax::ast::*; use syntax::ast::LitIntType::*; use rustc::ty::util::IntTypeExt; if let ty::TyAdt(adt, _) = ty.sty { if adt.is_enum() { ty = adt.repr.discr_type().to_ty(tcx) } } match *lit { LitKind::Str(ref is, style) => Constant::Str(is.to_string(), style), LitKind::Byte(b) => Constant::Int(ConstInt::U8(b)), LitKind::ByteStr(ref s) => Constant::Binary(s.clone()), LitKind::Char(c) => Constant::Char(c), LitKind::Int(n, hint) => { match (&ty.sty, hint) { (&ty::TyInt(ity), _) | (_, Signed(ity)) => { Constant::Int(ConstInt::new_signed_truncating(n as i128, ity, tcx.sess.target.int_type)) }, (&ty::TyUint(uty), _) | (_, Unsigned(uty)) => { Constant::Int(ConstInt::new_unsigned_truncating(n as u128, uty, tcx.sess.target.uint_type)) }, _ => bug!(), } }, LitKind::Float(ref is, ty) => Constant::Float(is.to_string(), ty.into()), LitKind::FloatUnsuffixed(ref is) => Constant::Float(is.to_string(), FloatWidth::Any), LitKind::Bool(b) => Constant::Bool(b), } } fn constant_not(o: &Constant) -> Option { use self::Constant::*; match *o { Bool(b) => Some(Bool(!b)), Int(value) => (!value).ok().map(Int), _ => None, } } fn constant_negate(o: Constant) -> Option { use self::Constant::*; match o { Int(value) => (-value).ok().map(Int), Float(is, ty) => Some(Float(neg_float_str(&is), ty)), _ => None, } } fn neg_float_str(s: &str) -> String { if s.starts_with('-') { s[1..].to_owned() } else { format!("-{}", s) } } pub fn constant(lcx: &LateContext, e: &Expr) -> Option<(Constant, bool)> { let mut cx = ConstEvalLateContext { tcx: lcx.tcx, tables: lcx.tables, needed_resolution: false, substs: lcx.tcx.intern_substs(&[]), }; cx.expr(e).map(|cst| (cst, cx.needed_resolution)) } pub fn constant_simple(lcx: &LateContext, e: &Expr) -> Option { constant(lcx, e).and_then(|(cst, res)| if res { None } else { Some(cst) }) } struct ConstEvalLateContext<'a, 'tcx: 'a> { tcx: TyCtxt<'a, 'tcx, 'tcx>, tables: &'a ty::TypeckTables<'tcx>, needed_resolution: bool, substs: &'tcx Substs<'tcx>, } impl<'c, 'cc> ConstEvalLateContext<'c, 'cc> { /// simple constant folding: Insert an expression, get a constant or none. fn expr(&mut self, e: &Expr) -> Option { match e.node { ExprPath(ref qpath) => self.fetch_path(qpath, e.id), ExprBlock(ref block) => self.block(block), ExprIf(ref cond, ref then, ref otherwise) => self.ifthenelse(cond, then, otherwise), ExprLit(ref lit) => Some(lit_to_constant(&lit.node, self.tcx, self.tables.expr_ty(e))), ExprArray(ref vec) => self.multi(vec).map(Constant::Vec), ExprTup(ref tup) => self.multi(tup).map(Constant::Tuple), ExprRepeat(ref value, _) => { let n = match self.tables.expr_ty(e).sty { ty::TyArray(_, n) => n, _ => span_bug!(e.span, "typeck error"), }; self.expr(value).map(|v| Constant::Repeat(Box::new(v), n)) }, ExprUnary(op, ref operand) => { self.expr(operand).and_then(|o| match op { UnNot => constant_not(&o), UnNeg => constant_negate(o), UnDeref => Some(o), }) }, ExprBinary(op, ref left, ref right) => self.binop(op, left, right), // TODO: add other expressions _ => None, } } /// create `Some(Vec![..])` of all constants, unless there is any /// non-constant part fn multi(&mut self, vec: &[Expr]) -> Option> { vec.iter() .map(|elem| self.expr(elem)) .collect::>() } /// lookup a possibly constant expression from a ExprPath fn fetch_path(&mut self, qpath: &QPath, id: NodeId) -> Option { let def = self.tables.qpath_def(qpath, id); match def { Def::Const(def_id) | Def::AssociatedConst(def_id) => { let substs = self.tables .node_id_item_substs(id) .unwrap_or_else(|| self.tcx.intern_substs(&[])); let substs = if self.substs.is_empty() { substs } else { substs.subst(self.tcx, self.substs) }; if let Some((def_id, substs)) = lookup_const_by_id(self.tcx, def_id, substs) { let mut cx = ConstEvalLateContext { tcx: self.tcx, tables: self.tcx.typeck_tables_of(def_id), needed_resolution: false, substs: substs, }; let body = if let Some(id) = self.tcx.hir.as_local_node_id(def_id) { self.tcx.mir_const_qualif(def_id); self.tcx.hir.body(self.tcx.hir.body_owned_by(id)) } else { self.tcx.sess.cstore.item_body(self.tcx, def_id) }; let ret = cx.expr(&body.value); if ret.is_some() { self.needed_resolution = true; } return ret; } }, _ => {}, } None } /// A block can only yield a constant if it only has one constant expression fn block(&mut self, block: &Block) -> Option { if block.stmts.is_empty() { block.expr.as_ref().and_then(|b| self.expr(b)) } else { None } } fn ifthenelse(&mut self, cond: &Expr, then: &P, otherwise: &Option>) -> Option { if let Some(Constant::Bool(b)) = self.expr(cond) { if b { self.expr(&**then) } else { otherwise.as_ref().and_then(|expr| self.expr(expr)) } } else { None } } fn binop(&mut self, op: BinOp, left: &Expr, right: &Expr) -> Option { let l = if let Some(l) = self.expr(left) { l } else { return None; }; let r = self.expr(right); match (op.node, l, r) { (BiAdd, Constant::Int(l), Some(Constant::Int(r))) => (l + r).ok().map(Constant::Int), (BiSub, Constant::Int(l), Some(Constant::Int(r))) => (l - r).ok().map(Constant::Int), (BiMul, Constant::Int(l), Some(Constant::Int(r))) => (l * r).ok().map(Constant::Int), (BiDiv, Constant::Int(l), Some(Constant::Int(r))) => (l / r).ok().map(Constant::Int), (BiRem, Constant::Int(l), Some(Constant::Int(r))) => (l % r).ok().map(Constant::Int), (BiAnd, Constant::Bool(false), _) => Some(Constant::Bool(false)), (BiOr, Constant::Bool(true), _) => Some(Constant::Bool(true)), (BiAnd, Constant::Bool(true), Some(r)) | (BiOr, Constant::Bool(false), Some(r)) => Some(r), (BiBitXor, Constant::Bool(l), Some(Constant::Bool(r))) => Some(Constant::Bool(l ^ r)), (BiBitXor, Constant::Int(l), Some(Constant::Int(r))) => (l ^ r).ok().map(Constant::Int), (BiBitAnd, Constant::Bool(l), Some(Constant::Bool(r))) => Some(Constant::Bool(l & r)), (BiBitAnd, Constant::Int(l), Some(Constant::Int(r))) => (l & r).ok().map(Constant::Int), (BiBitOr, Constant::Bool(l), Some(Constant::Bool(r))) => Some(Constant::Bool(l | r)), (BiBitOr, Constant::Int(l), Some(Constant::Int(r))) => (l | r).ok().map(Constant::Int), (BiShl, Constant::Int(l), Some(Constant::Int(r))) => (l << r).ok().map(Constant::Int), (BiShr, Constant::Int(l), Some(Constant::Int(r))) => (l >> r).ok().map(Constant::Int), (BiEq, Constant::Int(l), Some(Constant::Int(r))) => Some(Constant::Bool(l == r)), (BiNe, Constant::Int(l), Some(Constant::Int(r))) => Some(Constant::Bool(l != r)), (BiLt, Constant::Int(l), Some(Constant::Int(r))) => Some(Constant::Bool(l < r)), (BiLe, Constant::Int(l), Some(Constant::Int(r))) => Some(Constant::Bool(l <= r)), (BiGe, Constant::Int(l), Some(Constant::Int(r))) => Some(Constant::Bool(l >= r)), (BiGt, Constant::Int(l), Some(Constant::Int(r))) => Some(Constant::Bool(l > r)), _ => None, } } }