//! Lints concerned with the grouping of digits with underscores in integral or //! floating-point literal expressions. use crate::utils::{in_macro, snippet_opt, span_lint_and_sugg}; use if_chain::if_chain; use rustc::lint::{in_external_macro, EarlyContext, EarlyLintPass, LintArray, LintContext, LintPass}; use rustc::{declare_lint_pass, declare_tool_lint, impl_lint_pass}; use rustc_errors::Applicability; use syntax::ast::*; use syntax_pos; declare_clippy_lint! { /// **What it does:** Warns if a long integral or floating-point constant does /// not contain underscores. /// /// **Why is this bad?** Reading long numbers is difficult without separators. /// /// **Known problems:** None. /// /// **Example:** /// /// ```rust /// let x: u64 = 61864918973511; /// ``` pub UNREADABLE_LITERAL, style, "long integer literal without underscores" } declare_clippy_lint! { /// **What it does:** Warns for mistyped suffix in literals /// /// **Why is this bad?** This is most probably a typo /// /// **Known problems:** /// - Recommends a signed suffix, even though the number might be too big and an unsigned /// suffix is required /// - Does not match on `_128` since that is a valid grouping for decimal and octal numbers /// /// **Example:** /// /// ```rust /// 2_32; /// ``` pub MISTYPED_LITERAL_SUFFIXES, correctness, "mistyped literal suffix" } declare_clippy_lint! { /// **What it does:** Warns if an integral or floating-point constant is /// grouped inconsistently with underscores. /// /// **Why is this bad?** Readers may incorrectly interpret inconsistently /// grouped digits. /// /// **Known problems:** None. /// /// **Example:** /// /// ```rust /// let x: u64 = 618_64_9189_73_511; /// ``` pub INCONSISTENT_DIGIT_GROUPING, style, "integer literals with digits grouped inconsistently" } declare_clippy_lint! { /// **What it does:** Warns if the digits of an integral or floating-point /// constant are grouped into groups that /// are too large. /// /// **Why is this bad?** Negatively impacts readability. /// /// **Known problems:** None. /// /// **Example:** /// /// ```rust /// let x: u64 = 6186491_8973511; /// ``` pub LARGE_DIGIT_GROUPS, pedantic, "grouping digits into groups that are too large" } declare_clippy_lint! { /// **What it does:** Warns if there is a better representation for a numeric literal. /// /// **Why is this bad?** Especially for big powers of 2 a hexadecimal representation is more /// readable than a decimal representation. /// /// **Known problems:** None. /// /// **Example:** /// /// `255` => `0xFF` /// `65_535` => `0xFFFF` /// `4_042_322_160` => `0xF0F0_F0F0` pub DECIMAL_LITERAL_REPRESENTATION, restriction, "using decimal representation when hexadecimal would be better" } #[derive(Debug, PartialEq)] pub(super) enum Radix { Binary, Octal, Decimal, Hexadecimal, } impl Radix { /// Returns a reasonable digit group size for this radix. #[must_use] fn suggest_grouping(&self) -> usize { match *self { Self::Binary | Self::Hexadecimal => 4, Self::Octal | Self::Decimal => 3, } } } /// A helper method to format numeric literals with digit grouping. /// `lit` must be a valid numeric literal without suffix. pub fn format_numeric_literal(lit: &str, type_suffix: Option<&str>, float: bool) -> String { NumericLiteral::new(lit, type_suffix, float).format() } #[derive(Debug)] pub(super) struct NumericLiteral<'a> { /// Which radix the literal was represented in. radix: Radix, /// The radix prefix, if present. prefix: Option<&'a str>, /// The integer part of the number. integer: &'a str, /// The fraction part of the number. fraction: Option<&'a str>, /// The character used as exponent seperator (b'e' or b'E') and the exponent part. exponent: Option<(char, &'a str)>, /// The type suffix, including preceding underscore if present. suffix: Option<&'a str>, } impl<'a> NumericLiteral<'a> { fn from_lit(src: &'a str, lit: &Lit) -> Option> { if lit.kind.is_numeric() && src.chars().next().map_or(false, |c| c.is_digit(10)) { let (unsuffixed, suffix) = split_suffix(&src, &lit.kind); let float = if let LitKind::Float(..) = lit.kind { true } else { false }; Some(NumericLiteral::new(unsuffixed, suffix, float)) } else { None } } #[must_use] fn new(lit: &'a str, suffix: Option<&'a str>, float: bool) -> Self { // Determine delimiter for radix prefix, if present, and radix. let radix = if lit.starts_with("0x") { Radix::Hexadecimal } else if lit.starts_with("0b") { Radix::Binary } else if lit.starts_with("0o") { Radix::Octal } else { Radix::Decimal }; // Grab part of the literal after prefix, if present. let (prefix, mut sans_prefix) = if let Radix::Decimal = radix { (None, lit) } else { let (p, s) = lit.split_at(2); (Some(p), s) }; if suffix.is_some() && sans_prefix.ends_with('_') { // The '_' before the suffix isn't part of the digits sans_prefix = &sans_prefix[..sans_prefix.len() - 1]; } let (integer, fraction, exponent) = Self::split_digit_parts(sans_prefix, float); Self { radix, prefix, integer, fraction, exponent, suffix, } } fn split_digit_parts(digits: &str, float: bool) -> (&str, Option<&str>, Option<(char, &str)>) { let mut integer = digits; let mut fraction = None; let mut exponent = None; if float { for (i, c) in digits.char_indices() { match c { '.' => { integer = &digits[..i]; fraction = Some(&digits[i + 1..]); }, 'e' | 'E' => { if integer.len() > i { integer = &digits[..i]; } else { fraction = Some(&digits[integer.len() + 1..i]); }; exponent = Some((c, &digits[i + 1..])); break; }, _ => {}, } } } (integer, fraction, exponent) } /// Returns literal formatted in a sensible way. fn format(&self) -> String { let mut output = String::new(); if let Some(prefix) = self.prefix { output.push_str(prefix); } let group_size = self.radix.suggest_grouping(); Self::group_digits( &mut output, self.integer, group_size, true, self.radix == Radix::Hexadecimal, ); if let Some(fraction) = self.fraction { output.push('.'); Self::group_digits(&mut output, fraction, group_size, false, false); } if let Some((separator, exponent)) = self.exponent { output.push(separator); Self::group_digits(&mut output, exponent, group_size, true, false); } if let Some(suffix) = self.suffix { output.push('_'); output.push_str(suffix); } output } fn group_digits(output: &mut String, input: &str, group_size: usize, partial_group_first: bool, pad: bool) { debug_assert!(group_size > 0); let mut digits = input.chars().filter(|&c| c != '_'); let first_group_size; if partial_group_first { first_group_size = (digits.clone().count() - 1) % group_size + 1; if pad { for _ in 0..group_size - first_group_size { output.push('0'); } } } else { first_group_size = group_size; } for _ in 0..first_group_size { if let Some(digit) = digits.next() { output.push(digit); } } for (c, i) in digits.zip((0..group_size).cycle()) { if i == 0 { output.push('_'); } output.push(c); } } } fn split_suffix<'a>(src: &'a str, lit_kind: &LitKind) -> (&'a str, Option<&'a str>) { debug_assert!(lit_kind.is_numeric()); if let Some(suffix_length) = lit_suffix_length(lit_kind) { let (unsuffixed, suffix) = src.split_at(src.len() - suffix_length); (unsuffixed, Some(suffix)) } else { (src, None) } } fn lit_suffix_length(lit_kind: &LitKind) -> Option { debug_assert!(lit_kind.is_numeric()); let suffix = match lit_kind { LitKind::Int(_, int_lit_kind) => match int_lit_kind { LitIntType::Signed(int_ty) => Some(int_ty.name_str()), LitIntType::Unsigned(uint_ty) => Some(uint_ty.name_str()), LitIntType::Unsuffixed => None, }, LitKind::Float(_, float_lit_kind) => match float_lit_kind { LitFloatType::Suffixed(float_ty) => Some(float_ty.name_str()), LitFloatType::Unsuffixed => None, }, _ => None, }; suffix.map(str::len) } enum WarningType { UnreadableLiteral, InconsistentDigitGrouping, LargeDigitGroups, DecimalRepresentation, MistypedLiteralSuffix, } impl WarningType { fn display(&self, suggested_format: String, cx: &EarlyContext<'_>, span: syntax_pos::Span) { match self { Self::MistypedLiteralSuffix => span_lint_and_sugg( cx, MISTYPED_LITERAL_SUFFIXES, span, "mistyped literal suffix", "did you mean to write", suggested_format, Applicability::MaybeIncorrect, ), Self::UnreadableLiteral => span_lint_and_sugg( cx, UNREADABLE_LITERAL, span, "long literal lacking separators", "consider", suggested_format, Applicability::MachineApplicable, ), Self::LargeDigitGroups => span_lint_and_sugg( cx, LARGE_DIGIT_GROUPS, span, "digit groups should be smaller", "consider", suggested_format, Applicability::MachineApplicable, ), Self::InconsistentDigitGrouping => span_lint_and_sugg( cx, INCONSISTENT_DIGIT_GROUPING, span, "digits grouped inconsistently by underscores", "consider", suggested_format, Applicability::MachineApplicable, ), Self::DecimalRepresentation => span_lint_and_sugg( cx, DECIMAL_LITERAL_REPRESENTATION, span, "integer literal has a better hexadecimal representation", "consider", suggested_format, Applicability::MachineApplicable, ), }; } } declare_lint_pass!(LiteralDigitGrouping => [ UNREADABLE_LITERAL, INCONSISTENT_DIGIT_GROUPING, LARGE_DIGIT_GROUPS, MISTYPED_LITERAL_SUFFIXES, ]); impl EarlyLintPass for LiteralDigitGrouping { fn check_expr(&mut self, cx: &EarlyContext<'_>, expr: &Expr) { if in_external_macro(cx.sess(), expr.span) { return; } if let ExprKind::Lit(ref lit) = expr.kind { Self::check_lit(cx, lit) } } } impl LiteralDigitGrouping { fn check_lit(cx: &EarlyContext<'_>, lit: &Lit) { let in_macro = in_macro(lit.span); if_chain! { if let Some(src) = snippet_opt(cx, lit.span); if let Some(mut num_lit) = NumericLiteral::from_lit(&src, &lit); then { if !Self::check_for_mistyped_suffix(cx, lit.span, &mut num_lit) { return; } let result = (|| { let integral_group_size = Self::get_group_size(num_lit.integer.split('_'), in_macro)?; if let Some(fraction) = num_lit.fraction { let fractional_group_size = Self::get_group_size(fraction.rsplit('_'), in_macro)?; let consistent = Self::parts_consistent(integral_group_size, fractional_group_size, num_lit.integer.len(), fraction.len()); if !consistent { return Err(WarningType::InconsistentDigitGrouping); }; } Ok(()) })(); if let Err(warning_type) = result { warning_type.display(num_lit.format(), cx, lit.span) } } } } // Returns `false` if the check fails fn check_for_mistyped_suffix( cx: &EarlyContext<'_>, span: syntax_pos::Span, num_lit: &mut NumericLiteral<'_>, ) -> bool { if num_lit.suffix.is_some() { return true; } let (part, mistyped_suffixes, missing_char) = if let Some((_, exponent)) = &mut num_lit.exponent { (exponent, &["32", "64"][..], 'f') } else if let Some(fraction) = &mut num_lit.fraction { (fraction, &["32", "64"][..], 'f') } else { (&mut num_lit.integer, &["8", "16", "32", "64"][..], 'i') }; let mut split = part.rsplit('_'); let last_group = split.next().expect("At least one group"); if split.next().is_some() && mistyped_suffixes.contains(&last_group) { *part = &part[..part.len() - last_group.len()]; let mut sugg = num_lit.format(); sugg.push('_'); sugg.push(missing_char); sugg.push_str(last_group); WarningType::MistypedLiteralSuffix.display(sugg, cx, span); false } else { true } } /// Given the sizes of the digit groups of both integral and fractional /// parts, and the length /// of both parts, determine if the digits have been grouped consistently. #[must_use] fn parts_consistent( int_group_size: Option, frac_group_size: Option, int_size: usize, frac_size: usize, ) -> bool { match (int_group_size, frac_group_size) { // No groups on either side of decimal point - trivially consistent. (None, None) => true, // Integral part has grouped digits, fractional part does not. (Some(int_group_size), None) => frac_size <= int_group_size, // Fractional part has grouped digits, integral part does not. (None, Some(frac_group_size)) => int_size <= frac_group_size, // Both parts have grouped digits. Groups should be the same size. (Some(int_group_size), Some(frac_group_size)) => int_group_size == frac_group_size, } } /// Returns the size of the digit groups (or None if ungrouped) if successful, /// otherwise returns a `WarningType` for linting. fn get_group_size<'a>(groups: impl Iterator, in_macro: bool) -> Result, WarningType> { let mut groups = groups.map(str::len); let first = groups.next().expect("At least one group"); if let Some(second) = groups.next() { if !groups.all(|x| x == second) || first > second { Err(WarningType::InconsistentDigitGrouping) } else if second > 4 { Err(WarningType::LargeDigitGroups) } else { Ok(Some(second)) } } else if first > 5 && !in_macro { Err(WarningType::UnreadableLiteral) } else { Ok(None) } } } #[allow(clippy::module_name_repetitions)] #[derive(Copy, Clone)] pub struct DecimalLiteralRepresentation { threshold: u64, } impl_lint_pass!(DecimalLiteralRepresentation => [DECIMAL_LITERAL_REPRESENTATION]); impl EarlyLintPass for DecimalLiteralRepresentation { fn check_expr(&mut self, cx: &EarlyContext<'_>, expr: &Expr) { if in_external_macro(cx.sess(), expr.span) { return; } if let ExprKind::Lit(ref lit) = expr.kind { self.check_lit(cx, lit) } } } impl DecimalLiteralRepresentation { #[must_use] pub fn new(threshold: u64) -> Self { Self { threshold } } fn check_lit(self, cx: &EarlyContext<'_>, lit: &Lit) { // Lint integral literals. if_chain! { if let LitKind::Int(val, _) = lit.kind; if let Some(src) = snippet_opt(cx, lit.span); if let Some(num_lit) = NumericLiteral::from_lit(&src, &lit); if num_lit.radix == Radix::Decimal; if val >= u128::from(self.threshold); then { let hex = format!("{:#X}", val); let num_lit = NumericLiteral::new(&hex, None, false); let _ = Self::do_lint(num_lit.integer).map_err(|warning_type| { warning_type.display(num_lit.format(), cx, lit.span) }); } } } fn do_lint(digits: &str) -> Result<(), WarningType> { if digits.len() == 1 { // Lint for 1 digit literals, if someone really sets the threshold that low if digits == "1" || digits == "2" || digits == "4" || digits == "8" || digits == "3" || digits == "7" || digits == "F" { return Err(WarningType::DecimalRepresentation); } } else if digits.len() < 4 { // Lint for Literals with a hex-representation of 2 or 3 digits let f = &digits[0..1]; // first digit let s = &digits[1..]; // suffix // Powers of 2 if ((f.eq("1") || f.eq("2") || f.eq("4") || f.eq("8")) && s.chars().all(|c| c == '0')) // Powers of 2 minus 1 || ((f.eq("1") || f.eq("3") || f.eq("7") || f.eq("F")) && s.chars().all(|c| c == 'F')) { return Err(WarningType::DecimalRepresentation); } } else { // Lint for Literals with a hex-representation of 4 digits or more let f = &digits[0..1]; // first digit let m = &digits[1..digits.len() - 1]; // middle digits, except last let s = &digits[1..]; // suffix // Powers of 2 with a margin of +15/-16 if ((f.eq("1") || f.eq("2") || f.eq("4") || f.eq("8")) && m.chars().all(|c| c == '0')) || ((f.eq("1") || f.eq("3") || f.eq("7") || f.eq("F")) && m.chars().all(|c| c == 'F')) // Lint for representations with only 0s and Fs, while allowing 7 as the first // digit || ((f.eq("7") || f.eq("F")) && s.chars().all(|c| c == '0' || c == 'F')) { return Err(WarningType::DecimalRepresentation); } } Ok(()) } }