use rustc_front::hir::*; use reexport::*; use rustc::lint::*; use syntax::codemap::Span; use rustc_front::intravisit::{Visitor, walk_ty, walk_ty_param_bound, walk_fn_decl, walk_generics}; use rustc::middle::def::Def::{DefTy, DefTrait, DefStruct}; use std::collections::{HashSet, HashMap}; use utils::{in_external_macro, span_lint}; /// **What it does:** This lint checks for lifetime annotations which can be removed by relying on lifetime elision. It is `Warn` by default. /// /// **Why is this bad?** The additional lifetimes make the code look more complicated, while there is nothing out of the ordinary going on. Removing them leads to more readable code. /// /// **Known problems:** Potential false negatives: we bail out if the function has a `where` clause where lifetimes are mentioned. /// /// **Example:** `fn in_and_out<'a>(x: &'a u8, y: u8) -> &'a u8 { x }` declare_lint!(pub NEEDLESS_LIFETIMES, Warn, "using explicit lifetimes for references in function arguments when elision rules \ would allow omitting them"); /// **What it does:** This lint checks for lifetimes in generics that are never used anywhere else. It is `Warn` by default. /// /// **Why is this bad?** The additional lifetimes make the code look more complicated, while there is nothing out of the ordinary going on. Removing them leads to more readable code. /// /// **Known problems:** None /// /// **Example:** `fn unused_lifetime<'a>(x: u8) { .. }` declare_lint!(pub UNUSED_LIFETIMES, Warn, "unused lifetimes in function definitions"); #[derive(Copy,Clone)] pub struct LifetimePass; impl LintPass for LifetimePass { fn get_lints(&self) -> LintArray { lint_array!(NEEDLESS_LIFETIMES, UNUSED_LIFETIMES) } } impl LateLintPass for LifetimePass { fn check_item(&mut self, cx: &LateContext, item: &Item) { if let ItemFn(ref decl, _, _, _, ref generics, _) = item.node { check_fn_inner(cx, decl, None, &generics, item.span); } } fn check_impl_item(&mut self, cx: &LateContext, item: &ImplItem) { if let ImplItemKind::Method(ref sig, _) = item.node { check_fn_inner(cx, &sig.decl, Some(&sig.explicit_self), &sig.generics, item.span); } } fn check_trait_item(&mut self, cx: &LateContext, item: &TraitItem) { if let MethodTraitItem(ref sig, _) = item.node { check_fn_inner(cx, &sig.decl, Some(&sig.explicit_self), &sig.generics, item.span); } } } /// The lifetime of a &-reference. #[derive(PartialEq, Eq, Hash, Debug)] enum RefLt { Unnamed, Static, Named(Name), } use self::RefLt::*; fn check_fn_inner(cx: &LateContext, decl: &FnDecl, slf: Option<&ExplicitSelf>, generics: &Generics, span: Span) { if in_external_macro(cx, span) || has_where_lifetimes(cx, &generics.where_clause) { return; } if could_use_elision(cx, decl, slf, &generics.lifetimes) { span_lint(cx, NEEDLESS_LIFETIMES, span, "explicit lifetimes given in parameter types where they could be elided"); } report_extra_lifetimes(cx, decl, &generics, slf); } fn could_use_elision(cx: &LateContext, func: &FnDecl, slf: Option<&ExplicitSelf>, named_lts: &[LifetimeDef]) -> bool { // There are two scenarios where elision works: // * no output references, all input references have different LT // * output references, exactly one input reference with same LT // All lifetimes must be unnamed, 'static or defined without bounds on the // level of the current item. // check named LTs let allowed_lts = allowed_lts_from(named_lts); // these will collect all the lifetimes for references in arg/return types let mut input_visitor = RefVisitor::new(cx); let mut output_visitor = RefVisitor::new(cx); // extract lifetime in "self" argument for methods (there is a "self" argument // in func.inputs, but its type is TyInfer) if let Some(slf) = slf { match slf.node { SelfRegion(ref opt_lt, _, _) => input_visitor.record(opt_lt), SelfExplicit(ref ty, _) => walk_ty(&mut input_visitor, ty), _ => {} } } // extract lifetimes in input argument types for arg in &func.inputs { input_visitor.visit_ty(&arg.ty); } // extract lifetimes in output type if let Return(ref ty) = func.output { output_visitor.visit_ty(ty); } let input_lts = input_visitor.into_vec(); let output_lts = output_visitor.into_vec(); // check for lifetimes from higher scopes for lt in input_lts.iter().chain(output_lts.iter()) { if !allowed_lts.contains(lt) { return false; } } // no input lifetimes? easy case! if input_lts.is_empty() { false } else if output_lts.is_empty() { // no output lifetimes, check distinctness of input lifetimes // only unnamed and static, ok if input_lts.iter().all(|lt| *lt == Unnamed || *lt == Static) { return false; } // we have no output reference, so we only need all distinct lifetimes input_lts.len() == unique_lifetimes(&input_lts) } else { // we have output references, so we need one input reference, // and all output lifetimes must be the same if unique_lifetimes(&output_lts) > 1 { return false; } if input_lts.len() == 1 { match (&input_lts[0], &output_lts[0]) { (&Named(n1), &Named(n2)) if n1 == n2 => true, (&Named(_), &Unnamed) => true, (&Unnamed, &Named(_)) => true, _ => false, // already elided, different named lifetimes // or something static going on } } else { false } } } fn allowed_lts_from(named_lts: &[LifetimeDef]) -> HashSet { let mut allowed_lts = HashSet::new(); for lt in named_lts { if lt.bounds.is_empty() { allowed_lts.insert(Named(lt.lifetime.name)); } } allowed_lts.insert(Unnamed); allowed_lts.insert(Static); allowed_lts } /// Number of unique lifetimes in the given vector. fn unique_lifetimes(lts: &[RefLt]) -> usize { lts.iter().collect::>().len() } /// A visitor usable for rustc_front::visit::walk_ty(). struct RefVisitor<'v, 't: 'v> { cx: &'v LateContext<'v, 't>, // context reference lts: Vec, } impl<'v, 't> RefVisitor<'v, 't> { fn new(cx: &'v LateContext<'v, 't>) -> RefVisitor<'v, 't> { RefVisitor { cx: cx, lts: Vec::new(), } } fn record(&mut self, lifetime: &Option) { if let Some(ref lt) = *lifetime { if lt.name.as_str() == "'static" { self.lts.push(Static); } else { self.lts.push(Named(lt.name)); } } else { self.lts.push(Unnamed); } } fn into_vec(self) -> Vec { self.lts } fn collect_anonymous_lifetimes(&mut self, path: &Path, ty: &Ty) { let last_path_segment = path.segments.last().map(|s| &s.parameters); if let Some(&AngleBracketedParameters(ref params)) = last_path_segment { if params.lifetimes.is_empty() { if let Some(def) = self.cx.tcx.def_map.borrow().get(&ty.id).map(|r| r.full_def()) { match def { DefTy(def_id, _) | DefStruct(def_id) => { let type_scheme = self.cx.tcx.lookup_item_type(def_id); for _ in type_scheme.generics.regions.as_slice() { self.record(&None); } } DefTrait(def_id) => { let trait_def = self.cx.tcx.trait_defs.borrow()[&def_id]; for _ in &trait_def.generics.regions { self.record(&None); } } _ => {} } } } } } } impl<'v, 't> Visitor<'v> for RefVisitor<'v, 't> { // for lifetimes as parameters of generics fn visit_lifetime(&mut self, lifetime: &'v Lifetime) { self.record(&Some(*lifetime)); } fn visit_ty(&mut self, ty: &'v Ty) { match ty.node { TyRptr(None, _) => { self.record(&None); } TyPath(_, ref path) => { self.collect_anonymous_lifetimes(path, ty); } _ => {} } walk_ty(self, ty); } } /// Are any lifetimes mentioned in the `where` clause? If yes, we don't try to /// reason about elision. fn has_where_lifetimes(cx: &LateContext, where_clause: &WhereClause) -> bool { for predicate in &where_clause.predicates { match *predicate { WherePredicate::RegionPredicate(..) => return true, WherePredicate::BoundPredicate(ref pred) => { // a predicate like F: Trait or F: for<'a> Trait<'a> let mut visitor = RefVisitor::new(cx); // walk the type F, it may not contain LT refs walk_ty(&mut visitor, &pred.bounded_ty); if !visitor.lts.is_empty() { return true; } // if the bounds define new lifetimes, they are fine to occur let allowed_lts = allowed_lts_from(&pred.bound_lifetimes); // now walk the bounds for bound in pred.bounds.iter() { walk_ty_param_bound(&mut visitor, bound); } // and check that all lifetimes are allowed for lt in visitor.into_vec() { if !allowed_lts.contains(<) { return true; } } } WherePredicate::EqPredicate(ref pred) => { let mut visitor = RefVisitor::new(cx); walk_ty(&mut visitor, &pred.ty); if !visitor.lts.is_empty() { return true; } } } } false } struct LifetimeChecker(HashMap); impl<'v> Visitor<'v> for LifetimeChecker { // for lifetimes as parameters of generics fn visit_lifetime(&mut self, lifetime: &'v Lifetime) { self.0.remove(&lifetime.name); } fn visit_lifetime_def(&mut self, _: &'v LifetimeDef) { // don't actually visit `<'a>` or `<'a: 'b>` // we've already visited the `'a` declarations and // don't want to spuriously remove them // `'b` in `'a: 'b` is useless unless used elsewhere in // a non-lifetime bound } } fn report_extra_lifetimes(cx: &LateContext, func: &FnDecl, generics: &Generics, slf: Option<&ExplicitSelf>) { let hs = generics.lifetimes .iter() .map(|lt| (lt.lifetime.name, lt.lifetime.span)) .collect(); let mut checker = LifetimeChecker(hs); walk_generics(&mut checker, generics); walk_fn_decl(&mut checker, func); if let Some(slf) = slf { match slf.node { SelfRegion(Some(ref lt), _, _) => checker.visit_lifetime(lt), SelfExplicit(ref t, _) => walk_ty(&mut checker, t), _ => {} } } for (_, v) in checker.0 { span_lint(cx, UNUSED_LIFETIMES, v, "this lifetime isn't used in the function definition"); } }