use clippy_utils::diagnostics::span_lint_and_then; use clippy_utils::match_function_call; use clippy_utils::paths::FUTURE_FROM_GENERATOR; use clippy_utils::source::{position_before_rarrow, snippet_block, snippet_opt}; use if_chain::if_chain; use rustc_errors::Applicability; use rustc_hir::intravisit::FnKind; use rustc_hir::{ AsyncGeneratorKind, Block, Body, Expr, ExprKind, FnDecl, FnRetTy, GeneratorKind, GenericArg, GenericBound, HirId, IsAsync, ItemKind, LifetimeName, TraitRef, Ty, TyKind, TypeBindingKind, }; use rustc_lint::{LateContext, LateLintPass}; use rustc_session::{declare_lint_pass, declare_tool_lint}; use rustc_span::{sym, Span}; declare_clippy_lint! { /// ### What it does /// It checks for manual implementations of `async` functions. /// /// ### Why is this bad? /// It's more idiomatic to use the dedicated syntax. /// /// ### Example /// ```rust /// use std::future::Future; /// /// fn foo() -> impl Future { async { 42 } } /// ``` /// Use instead: /// ```rust /// async fn foo() -> i32 { 42 } /// ``` pub MANUAL_ASYNC_FN, style, "manual implementations of `async` functions can be simplified using the dedicated syntax" } declare_lint_pass!(ManualAsyncFn => [MANUAL_ASYNC_FN]); impl<'tcx> LateLintPass<'tcx> for ManualAsyncFn { fn check_fn( &mut self, cx: &LateContext<'tcx>, kind: FnKind<'tcx>, decl: &'tcx FnDecl<'_>, body: &'tcx Body<'_>, span: Span, _: HirId, ) { if_chain! { if let Some(header) = kind.header(); if header.asyncness == IsAsync::NotAsync; // Check that this function returns `impl Future` if let FnRetTy::Return(ret_ty) = decl.output; if let Some((trait_ref, output_lifetimes)) = future_trait_ref(cx, ret_ty); if let Some(output) = future_output_ty(trait_ref); if captures_all_lifetimes(decl.inputs, &output_lifetimes); // Check that the body of the function consists of one async block if let ExprKind::Block(block, _) = body.value.kind; if block.stmts.is_empty(); if let Some(closure_body) = desugared_async_block(cx, block); then { let header_span = span.with_hi(ret_ty.span.hi()); span_lint_and_then( cx, MANUAL_ASYNC_FN, header_span, "this function can be simplified using the `async fn` syntax", |diag| { if_chain! { if let Some(header_snip) = snippet_opt(cx, header_span); if let Some(ret_pos) = position_before_rarrow(&header_snip); if let Some((ret_sugg, ret_snip)) = suggested_ret(cx, output); then { let help = format!("make the function `async` and {}", ret_sugg); diag.span_suggestion( header_span, &help, format!("async {}{}", &header_snip[..ret_pos], ret_snip), Applicability::MachineApplicable ); let body_snip = snippet_block(cx, closure_body.value.span, "..", Some(block.span)); diag.span_suggestion( block.span, "move the body of the async block to the enclosing function", body_snip.to_string(), Applicability::MachineApplicable ); } } }, ); } } } } fn future_trait_ref<'tcx>( cx: &LateContext<'tcx>, ty: &'tcx Ty<'tcx>, ) -> Option<(&'tcx TraitRef<'tcx>, Vec)> { if_chain! { if let TyKind::OpaqueDef(item_id, bounds) = ty.kind; let item = cx.tcx.hir().item(item_id); if let ItemKind::OpaqueTy(opaque) = &item.kind; if let Some(trait_ref) = opaque.bounds.iter().find_map(|bound| { if let GenericBound::Trait(poly, _) = bound { Some(&poly.trait_ref) } else { None } }); if trait_ref.trait_def_id() == cx.tcx.lang_items().future_trait(); then { let output_lifetimes = bounds .iter() .filter_map(|bound| { if let GenericArg::Lifetime(lt) = bound { Some(lt.name) } else { None } }) .collect(); return Some((trait_ref, output_lifetimes)); } } None } fn future_output_ty<'tcx>(trait_ref: &'tcx TraitRef<'tcx>) -> Option<&'tcx Ty<'tcx>> { if_chain! { if let Some(segment) = trait_ref.path.segments.last(); if let Some(args) = segment.args; if args.bindings.len() == 1; let binding = &args.bindings[0]; if binding.ident.name == sym::Output; if let TypeBindingKind::Equality{ty: output} = binding.kind; then { return Some(output) } } None } fn captures_all_lifetimes(inputs: &[Ty<'_>], output_lifetimes: &[LifetimeName]) -> bool { let input_lifetimes: Vec = inputs .iter() .filter_map(|ty| { if let TyKind::Rptr(lt, _) = ty.kind { Some(lt.name) } else { None } }) .collect(); // The lint should trigger in one of these cases: // - There are no input lifetimes // - There's only one output lifetime bound using `+ '_` // - All input lifetimes are explicitly bound to the output input_lifetimes.is_empty() || (output_lifetimes.len() == 1 && matches!(output_lifetimes[0], LifetimeName::Underscore)) || input_lifetimes .iter() .all(|in_lt| output_lifetimes.iter().any(|out_lt| in_lt == out_lt)) } fn desugared_async_block<'tcx>(cx: &LateContext<'tcx>, block: &'tcx Block<'tcx>) -> Option<&'tcx Body<'tcx>> { if_chain! { if let Some(block_expr) = block.expr; if let Some(args) = match_function_call(cx, block_expr, &FUTURE_FROM_GENERATOR); if args.len() == 1; if let Expr{kind: ExprKind::Closure(_, _, body_id, ..), ..} = args[0]; let closure_body = cx.tcx.hir().body(body_id); if closure_body.generator_kind == Some(GeneratorKind::Async(AsyncGeneratorKind::Block)); then { return Some(closure_body); } } None } fn suggested_ret(cx: &LateContext<'_>, output: &Ty<'_>) -> Option<(&'static str, String)> { match output.kind { TyKind::Tup(tys) if tys.is_empty() => { let sugg = "remove the return type"; Some((sugg, "".into())) }, _ => { let sugg = "return the output of the future directly"; snippet_opt(cx, output.span).map(|snip| (sugg, format!(" -> {}", snip))) }, } }