//! calculate cognitive complexity and warn about overly complex functions use rustc::hir::intravisit::{walk_expr, NestedVisitorMap, Visitor}; use rustc::hir::*; use rustc::lint::{LateContext, LateLintPass, LintArray, LintContext, LintPass}; use rustc::{declare_tool_lint, impl_lint_pass}; use syntax::ast::Attribute; use syntax::source_map::Span; use crate::utils::{match_type, paths, span_help_and_lint, LimitStack}; declare_clippy_lint! { /// **What it does:** Checks for methods with high cognitive complexity. /// /// **Why is this bad?** Methods of high cognitive complexity tend to be hard to /// both read and maintain. Also LLVM will tend to optimize small methods better. /// /// **Known problems:** Sometimes it's hard to find a way to reduce the /// complexity. /// /// **Example:** No. You'll see it when you get the warning. pub COGNITIVE_COMPLEXITY, complexity, "functions that should be split up into multiple functions" } pub struct CognitiveComplexity { limit: LimitStack, } impl CognitiveComplexity { pub fn new(limit: u64) -> Self { Self { limit: LimitStack::new(limit), } } } impl_lint_pass!(CognitiveComplexity => [COGNITIVE_COMPLEXITY]); impl CognitiveComplexity { fn check<'a, 'tcx>(&mut self, cx: &'a LateContext<'a, 'tcx>, body: &'tcx Body, span: Span) { if span.from_expansion() { return; } let expr = &body.value; let mut helper = CCHelper { cc: 1, returns: 0 }; helper.visit_expr(expr); let CCHelper { cc, returns } = helper; let ret_ty = cx.tables.node_type(expr.hir_id); let ret_adjust = if match_type(cx, ret_ty, &paths::RESULT) { returns } else { #[allow(clippy::integer_division)] (returns / 2) }; let mut rust_cc = cc; // prevent degenerate cases where unreachable code contains `return` statements if rust_cc >= ret_adjust { rust_cc -= ret_adjust; } if rust_cc > self.limit.limit() { span_help_and_lint( cx, COGNITIVE_COMPLEXITY, span, &format!( "the function has a cognitive complexity of ({}/{})", rust_cc, self.limit.limit() ), "you could split it up into multiple smaller functions", ); } } } impl<'a, 'tcx> LateLintPass<'a, 'tcx> for CognitiveComplexity { fn check_fn( &mut self, cx: &LateContext<'a, 'tcx>, _: intravisit::FnKind<'tcx>, _: &'tcx FnDecl, body: &'tcx Body, span: Span, hir_id: HirId, ) { let def_id = cx.tcx.hir().local_def_id(hir_id); if !cx.tcx.has_attr(def_id, sym!(test)) { self.check(cx, body, span); } } fn enter_lint_attrs(&mut self, cx: &LateContext<'a, 'tcx>, attrs: &'tcx [Attribute]) { self.limit.push_attrs(cx.sess(), attrs, "cognitive_complexity"); } fn exit_lint_attrs(&mut self, cx: &LateContext<'a, 'tcx>, attrs: &'tcx [Attribute]) { self.limit.pop_attrs(cx.sess(), attrs, "cognitive_complexity"); } } struct CCHelper { cc: u64, returns: u64, } impl<'tcx> Visitor<'tcx> for CCHelper { fn visit_expr(&mut self, e: &'tcx Expr) { walk_expr(self, e); match e.node { ExprKind::Match(_, ref arms, _) => { let arms_n: u64 = arms.iter().map(|arm| arm.pats.len() as u64).sum(); if arms_n > 1 { self.cc += 1; } self.cc += arms.iter().filter(|arm| arm.guard.is_some()).count() as u64; }, ExprKind::Ret(_) => self.returns += 1, _ => {}, } } fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> { NestedVisitorMap::None } }