use clippy_utils::diagnostics::span_lint_and_then; use clippy_utils::return_ty; use rustc_hir::intravisit::FnKind; use rustc_hir::{Body, FnDecl}; use rustc_infer::infer::TyCtxtInferExt; use rustc_lint::{LateContext, LateLintPass}; use rustc_middle::ty::{self, AliasTy, Clause, EarlyBinder, PredicateKind}; use rustc_session::{declare_lint_pass, declare_tool_lint}; use rustc_span::def_id::LocalDefId; use rustc_span::{sym, Span}; use rustc_trait_selection::traits::error_reporting::suggestions::TypeErrCtxtExt; use rustc_trait_selection::traits::{self, FulfillmentError, ObligationCtxt}; declare_clippy_lint! { /// ### What it does /// This lint requires Future implementations returned from /// functions and methods to implement the `Send` marker trait. It is mostly /// used by library authors (public and internal) that target an audience where /// multithreaded executors are likely to be used for running these Futures. /// /// ### Why is this bad? /// A Future implementation captures some state that it /// needs to eventually produce its final value. When targeting a multithreaded /// executor (which is the norm on non-embedded devices) this means that this /// state may need to be transported to other threads, in other words the /// whole Future needs to implement the `Send` marker trait. If it does not, /// then the resulting Future cannot be submitted to a thread pool in the /// end user’s code. /// /// Especially for generic functions it can be confusing to leave the /// discovery of this problem to the end user: the reported error location /// will be far from its cause and can in many cases not even be fixed without /// modifying the library where the offending Future implementation is /// produced. /// /// ### Example /// ```rust /// async fn not_send(bytes: std::rc::Rc<[u8]>) {} /// ``` /// Use instead: /// ```rust /// async fn is_send(bytes: std::sync::Arc<[u8]>) {} /// ``` #[clippy::version = "1.44.0"] pub FUTURE_NOT_SEND, nursery, "public Futures must be Send" } declare_lint_pass!(FutureNotSend => [FUTURE_NOT_SEND]); impl<'tcx> LateLintPass<'tcx> for FutureNotSend { fn check_fn( &mut self, cx: &LateContext<'tcx>, kind: FnKind<'tcx>, decl: &'tcx FnDecl<'tcx>, _: &'tcx Body<'tcx>, _: Span, fn_def_id: LocalDefId, ) { if let FnKind::Closure = kind { return; } let ret_ty = return_ty(cx, cx.tcx.hir().local_def_id_to_hir_id(fn_def_id).expect_owner()); if let ty::Alias(ty::Opaque, AliasTy { def_id, substs, .. }) = *ret_ty.kind() { let preds = cx.tcx.explicit_item_bounds(def_id); let mut is_future = false; for &(p, _span) in preds { let p = EarlyBinder(p).subst(cx.tcx, substs); if let Some(trait_pred) = p.to_opt_poly_trait_pred() { if Some(trait_pred.skip_binder().trait_ref.def_id) == cx.tcx.lang_items().future_trait() { is_future = true; break; } } } if is_future { let send_trait = cx.tcx.get_diagnostic_item(sym::Send).unwrap(); let span = decl.output.span(); let infcx = cx.tcx.infer_ctxt().build(); let ocx = ObligationCtxt::new(&infcx); let cause = traits::ObligationCause::misc(span, fn_def_id); ocx.register_bound(cause, cx.param_env, ret_ty, send_trait); let send_errors = ocx.select_all_or_error(); if !send_errors.is_empty() { span_lint_and_then( cx, FUTURE_NOT_SEND, span, "future cannot be sent between threads safely", |db| { for FulfillmentError { obligation, .. } in send_errors { infcx .err_ctxt() .maybe_note_obligation_cause_for_async_await(db, &obligation); if let PredicateKind::Clause(Clause::Trait(trait_pred)) = obligation.predicate.kind().skip_binder() { db.note(&format!( "`{}` doesn't implement `{}`", trait_pred.self_ty(), trait_pred.trait_ref.print_only_trait_path(), )); } } }, ); } } } } }