use rustc::lint::*; use rustc_front::hir::*; use reexport::*; use rustc_front::visit::{Visitor, walk_expr, walk_block, walk_decl}; use rustc::middle::ty; use rustc::middle::def::DefLocal; use consts::{constant_simple, Constant}; use rustc::front::map::Node::{NodeBlock}; use std::borrow::Cow; use std::collections::{HashSet,HashMap}; use syntax::ast::Lit_::*; use utils::{snippet, span_lint, get_parent_expr, match_trait_method, match_type, in_external_macro, expr_block, span_help_and_lint, is_integer_literal}; use utils::{VEC_PATH, LL_PATH}; declare_lint!{ pub NEEDLESS_RANGE_LOOP, Warn, "for-looping over a range of indices where an iterator over items would do" } declare_lint!{ pub EXPLICIT_ITER_LOOP, Warn, "for-looping over `_.iter()` or `_.iter_mut()` when `&_` or `&mut _` would do" } declare_lint!{ pub ITER_NEXT_LOOP, Warn, "for-looping over `_.next()` which is probably not intended" } declare_lint!{ pub WHILE_LET_LOOP, Warn, "`loop { if let { ... } else break }` can be written as a `while let` loop" } declare_lint!{ pub UNUSED_COLLECT, Warn, "`collect()`ing an iterator without using the result; this is usually better \ written as a for loop" } declare_lint!{ pub REVERSE_RANGE_LOOP, Warn, "Iterating over an empty range, such as `10..0` or `5..5`" } declare_lint!{ pub EXPLICIT_COUNTER_LOOP, Warn, "for-looping with an explicit counter when `_.enumerate()` would do" } declare_lint!{ pub EMPTY_LOOP, Warn, "empty `loop {}` detected" } declare_lint!{ pub WHILE_LET_ON_ITERATOR, Warn, "using a while-let loop instead of a for loop on an iterator" } #[derive(Copy, Clone)] pub struct LoopsPass; impl LintPass for LoopsPass { fn get_lints(&self) -> LintArray { lint_array!(NEEDLESS_RANGE_LOOP, EXPLICIT_ITER_LOOP, ITER_NEXT_LOOP, WHILE_LET_LOOP, UNUSED_COLLECT, REVERSE_RANGE_LOOP, EXPLICIT_COUNTER_LOOP, EMPTY_LOOP, WHILE_LET_ON_ITERATOR) } } impl LateLintPass for LoopsPass { fn check_expr(&mut self, cx: &LateContext, expr: &Expr) { if let Some((pat, arg, body)) = recover_for_loop(expr) { // check for looping over a range and then indexing a sequence with it // -> the iteratee must be a range literal if let ExprRange(Some(ref l), _) = arg.node { // Range should start with `0` if let ExprLit(ref lit) = l.node { if let LitInt(0, _) = lit.node { // the var must be a single name if let PatIdent(_, ref ident, _) = pat.node { let mut visitor = VarVisitor { cx: cx, var: ident.node.name, indexed: HashSet::new(), nonindex: false }; walk_expr(&mut visitor, body); // linting condition: we only indexed one variable if visitor.indexed.len() == 1 { let indexed = visitor.indexed.into_iter().next().expect( "Len was nonzero, but no contents found"); if visitor.nonindex { span_lint(cx, NEEDLESS_RANGE_LOOP, expr.span, &format!( "the loop variable `{}` is used to index `{}`. Consider using \ `for ({}, item) in {}.iter().enumerate()` or similar iterators", ident.node.name, indexed, ident.node.name, indexed)); } else { span_lint(cx, NEEDLESS_RANGE_LOOP, expr.span, &format!( "the loop variable `{}` is only used to index `{}`. \ Consider using `for item in &{}` or similar iterators", ident.node.name, indexed, indexed)); } } } } } } // if this for loop is iterating over a two-sided range... if let ExprRange(Some(ref start_expr), Some(ref stop_expr)) = arg.node { // ...and both sides are compile-time constant integers... if let Some(start_idx @ Constant::ConstantInt(..)) = constant_simple(start_expr) { if let Some(stop_idx @ Constant::ConstantInt(..)) = constant_simple(stop_expr) { // ...and the start index is greater than the stop index, // this loop will never run. This is often confusing for developers // who think that this will iterate from the larger value to the // smaller value. if start_idx > stop_idx { span_help_and_lint(cx, REVERSE_RANGE_LOOP, expr.span, "this range is empty so this for loop will never run", &format!("Consider using `({}..{}).rev()` if you are attempting to \ iterate over this range in reverse", stop_idx, start_idx)); } else if start_idx == stop_idx { // if they are equal, it's also problematic - this loop // will never run. span_lint(cx, REVERSE_RANGE_LOOP, expr.span, "this range is empty so this for loop will never run"); } } } } if let ExprMethodCall(ref method, _, ref args) = arg.node { // just the receiver, no arguments if args.len() == 1 { let method_name = method.node; // check for looping over x.iter() or x.iter_mut(), could use &x or &mut x if method_name.as_str() == "iter" || method_name.as_str() == "iter_mut" { if is_ref_iterable_type(cx, &args[0]) { let object = snippet(cx, args[0].span, "_"); span_lint(cx, EXPLICIT_ITER_LOOP, expr.span, &format!( "it is more idiomatic to loop over `&{}{}` instead of `{}.{}()`", if method_name.as_str() == "iter_mut" { "mut " } else { "" }, object, object, method_name)); } } // check for looping over Iterator::next() which is not what you want else if method_name.as_str() == "next" && match_trait_method(cx, arg, &["core", "iter", "Iterator"]) { span_lint(cx, ITER_NEXT_LOOP, expr.span, "you are iterating over `Iterator::next()` which is an Option; \ this will compile but is probably not what you want"); } } } // Look for variables that are incremented once per loop iteration. let mut visitor = IncrementVisitor { cx: cx, states: HashMap::new(), depth: 0, done: false }; walk_expr(&mut visitor, body); // For each candidate, check the parent block to see if // it's initialized to zero at the start of the loop. let map = &cx.tcx.map; let parent_scope = map.get_enclosing_scope(expr.id).and_then(|id| map.get_enclosing_scope(id) ); if let Some(parent_id) = parent_scope { if let NodeBlock(block) = map.get(parent_id) { for (id, _) in visitor.states.iter().filter( |&(_,v)| *v == VarState::IncrOnce) { let mut visitor2 = InitializeVisitor { cx: cx, end_expr: expr, var_id: id.clone(), state: VarState::IncrOnce, name: None, depth: 0, done: false }; walk_block(&mut visitor2, block); if visitor2.state == VarState::Warn { if let Some(name) = visitor2.name { span_lint(cx, EXPLICIT_COUNTER_LOOP, expr.span, &format!("the variable `{0}` is used as a loop counter. Consider \ using `for ({0}, item) in {1}.enumerate()` \ or similar iterators", name, snippet(cx, arg.span, "_"))); } } } } } } // check for `loop { if let {} else break }` that could be `while let` // (also matches an explicit "match" instead of "if let") // (even if the "match" or "if let" is used for declaration) if let ExprLoop(ref block, _) = expr.node { // also check for empty `loop {}` statements if block.stmts.is_empty() && block.expr.is_none() { span_lint(cx, EMPTY_LOOP, expr.span, "empty `loop {}` detected. You may want to either \ use `panic!()` or add `std::thread::sleep(..);` to \ the loop body."); } // extract the expression from the first statement (if any) in a block let inner_stmt_expr = extract_expr_from_first_stmt(block); // extract the first expression (if any) from the block let inner_expr = extract_first_expr(block); let (extracted, collect_expr) = match inner_stmt_expr { Some(_) => (inner_stmt_expr, true), // check if an expression exists in the first statement None => (inner_expr, false), // if not, let's go for the first expression in the block }; if let Some(inner) = extracted { if let ExprMatch(ref matchexpr, ref arms, ref source) = inner.node { // collect the remaining statements below the match let mut other_stuff = block.stmts .iter() .skip(1) .map(|stmt| { format!("{}", snippet(cx, stmt.span, "..")) }).collect::>(); if collect_expr { // if we have a statement which has a match, match block.expr { // then collect the expression (without semicolon) below it Some(ref expr) => other_stuff.push(format!("{}", snippet(cx, expr.span, ".."))), None => (), } } // ensure "if let" compatible match structure match *source { MatchSource::Normal | MatchSource::IfLetDesugar{..} => if arms.len() == 2 && arms[0].pats.len() == 1 && arms[0].guard.is_none() && arms[1].pats.len() == 1 && arms[1].guard.is_none() && // finally, check for "break" in the second clause is_break_expr(&arms[1].body) { if in_external_macro(cx, expr.span) { return; } let loop_body = match inner_stmt_expr { // FIXME: should probably be an ellipsis // tabbing and newline is probably a bad idea, especially for large blocks Some(_) => Cow::Owned(format!("{{\n {}\n}}", other_stuff.join("\n "))), None => expr_block(cx, &arms[0].body, Some(other_stuff.join("\n ")), ".."), }; span_help_and_lint(cx, WHILE_LET_LOOP, expr.span, "this loop could be written as a `while let` loop", &format!("try\nwhile let {} = {} {}", snippet(cx, arms[0].pats[0].span, ".."), snippet(cx, matchexpr.span, ".."), loop_body)); }, _ => () } } } } if let ExprMatch(ref match_expr, ref arms, MatchSource::WhileLetDesugar) = expr.node { let body = &arms[0].body; let pat = &arms[0].pats[0].node; if let (&PatEnum(ref path, Some(ref pat_args)), &ExprMethodCall(method_name, _, ref method_args)) = (pat, &match_expr.node) { let iterator_def_id = var_def_id(cx, &method_args[0]); if let Some(lhs_constructor) = path.segments.last() { if method_name.node.as_str() == "next" && match_trait_method(cx, match_expr, &["core", "iter", "Iterator"]) && lhs_constructor.identifier.name.as_str() == "Some" && !var_used(body, iterator_def_id, cx) { let iterator = snippet(cx, method_args[0].span, "_"); let loop_var = snippet(cx, pat_args[0].span, "_"); span_help_and_lint(cx, WHILE_LET_ON_ITERATOR, expr.span, "this loop could be written as a `for` loop", &format!("try\nfor {} in {} {{...}}", loop_var, iterator)); } } } } } fn check_stmt(&mut self, cx: &LateContext, stmt: &Stmt) { if let StmtSemi(ref expr, _) = stmt.node { if let ExprMethodCall(ref method, _, ref args) = expr.node { if args.len() == 1 && method.node.as_str() == "collect" && match_trait_method(cx, expr, &["core", "iter", "Iterator"]) { span_lint(cx, UNUSED_COLLECT, expr.span, &format!( "you are collect()ing an iterator and throwing away the result. \ Consider using an explicit for loop to exhaust the iterator")); } } } } } /// Recover the essential nodes of a desugared for loop: /// `for pat in arg { body }` becomes `(pat, arg, body)`. fn recover_for_loop(expr: &Expr) -> Option<(&Pat, &Expr, &Expr)> { if_let_chain! { [ let ExprMatch(ref iterexpr, ref arms, _) = expr.node, let ExprCall(_, ref iterargs) = iterexpr.node, iterargs.len() == 1 && arms.len() == 1 && arms[0].guard.is_none(), let ExprLoop(ref block, _) = arms[0].body.node, block.stmts.is_empty(), let Some(ref loopexpr) = block.expr, let ExprMatch(_, ref innerarms, MatchSource::ForLoopDesugar) = loopexpr.node, innerarms.len() == 2 && innerarms[0].pats.len() == 1, let PatEnum(_, Some(ref somepats)) = innerarms[0].pats[0].node, somepats.len() == 1 ], { return Some((&somepats[0], &iterargs[0], &innerarms[0].body)); } } None } struct VarVisitor<'v, 't: 'v> { cx: &'v LateContext<'v, 't>, // context reference var: Name, // var name to look for as index indexed: HashSet, // indexed variables nonindex: bool, // has the var been used otherwise? } impl<'v, 't> Visitor<'v> for VarVisitor<'v, 't> { fn visit_expr(&mut self, expr: &'v Expr) { if let ExprPath(None, ref path) = expr.node { if path.segments.len() == 1 && path.segments[0].identifier.name == self.var { // we are referencing our variable! now check if it's as an index if_let_chain! { [ let Some(parexpr) = get_parent_expr(self.cx, expr), let ExprIndex(ref seqexpr, _) = parexpr.node, let ExprPath(None, ref seqvar) = seqexpr.node, seqvar.segments.len() == 1 ], { self.indexed.insert(seqvar.segments[0].identifier.name); return; // no need to walk further } } // we are not indexing anything, record that self.nonindex = true; return; } } walk_expr(self, expr); } } fn var_used(expr: &Expr, def_id: Option, cx: &LateContext) -> bool { match def_id { None => false, Some(def_id) => { let mut visitor = VarUsedVisitor{ def_id: def_id, found: false, cx: cx }; walk_expr(&mut visitor, expr); visitor.found } } } struct VarUsedVisitor<'v, 't: 'v> { cx: &'v LateContext<'v, 't>, def_id: NodeId, found: bool } impl<'v, 't> Visitor<'v> for VarUsedVisitor<'v, 't> { fn visit_expr(&mut self, expr: &'v Expr) { if Some(self.def_id) == var_def_id(self.cx, expr) { self.found = true; } walk_expr(self, expr); } } /// Return true if the type of expr is one that provides IntoIterator impls /// for &T and &mut T, such as Vec. fn is_ref_iterable_type(cx: &LateContext, e: &Expr) -> bool { // no walk_ptrs_ty: calling iter() on a reference can make sense because it // will allow further borrows afterwards let ty = cx.tcx.expr_ty(e); is_iterable_array(ty) || match_type(cx, ty, &VEC_PATH) || match_type(cx, ty, &LL_PATH) || match_type(cx, ty, &["std", "collections", "hash", "map", "HashMap"]) || match_type(cx, ty, &["std", "collections", "hash", "set", "HashSet"]) || match_type(cx, ty, &["collections", "vec_deque", "VecDeque"]) || match_type(cx, ty, &["collections", "binary_heap", "BinaryHeap"]) || match_type(cx, ty, &["collections", "btree", "map", "BTreeMap"]) || match_type(cx, ty, &["collections", "btree", "set", "BTreeSet"]) } fn is_iterable_array(ty: ty::Ty) -> bool { // IntoIterator is currently only implemented for array sizes <= 32 in rustc match ty.sty { ty::TyArray(_, 0...32) => true, _ => false } } /// If a block begins with a statement (possibly a `let` binding) and has an expression, return it. fn extract_expr_from_first_stmt(block: &Block) -> Option<&Expr> { if block.stmts.is_empty() { return None; } if let StmtDecl(ref decl, _) = block.stmts[0].node { if let DeclLocal(ref local) = decl.node { if let Some(ref expr) = local.init { Some(expr) } else { None } } else { None } } else { None } } /// If a block begins with an expression (with or without semicolon), return it. fn extract_first_expr(block: &Block) -> Option<&Expr> { match block.expr { Some(ref expr) => Some(expr), None if !block.stmts.is_empty() => match block.stmts[0].node { StmtExpr(ref expr, _) | StmtSemi(ref expr, _) => Some(expr), _ => None, }, _ => None, } } /// Return true if expr contains a single break expr (maybe within a block). fn is_break_expr(expr: &Expr) -> bool { match expr.node { ExprBreak(None) => true, // there won't be a `let = break` and so we can safely ignore the StmtDecl case ExprBlock(ref b) => match extract_first_expr(b) { Some(ref subexpr) => is_break_expr(subexpr), None => false, }, _ => false, } } // To trigger the EXPLICIT_COUNTER_LOOP lint, a variable must be // incremented exactly once in the loop body, and initialized to zero // at the start of the loop. #[derive(PartialEq)] enum VarState { Initial, // Not examined yet IncrOnce, // Incremented exactly once, may be a loop counter Declared, // Declared but not (yet) initialized to zero Warn, DontWarn } // Scan a for loop for variables that are incremented exactly once. struct IncrementVisitor<'v, 't: 'v> { cx: &'v LateContext<'v, 't>, // context reference states: HashMap, // incremented variables depth: u32, // depth of conditional expressions done: bool } impl<'v, 't> Visitor<'v> for IncrementVisitor<'v, 't> { fn visit_expr(&mut self, expr: &'v Expr) { if self.done { return; } // If node is a variable if let Some(def_id) = var_def_id(self.cx, expr) { if let Some(parent) = get_parent_expr(self.cx, expr) { let state = self.states.entry(def_id).or_insert(VarState::Initial); match parent.node { ExprAssignOp(op, ref lhs, ref rhs) => if lhs.id == expr.id { if op.node == BiAdd && is_integer_literal(rhs, 1) { *state = match *state { VarState::Initial if self.depth == 0 => VarState::IncrOnce, _ => VarState::DontWarn }; } else { // Assigned some other value *state = VarState::DontWarn; } }, ExprAssign(ref lhs, _) if lhs.id == expr.id => *state = VarState::DontWarn, ExprAddrOf(mutability,_) if mutability == MutMutable => *state = VarState::DontWarn, _ => () } } } // Give up if there are nested loops else if is_loop(expr) { self.states.clear(); self.done = true; return; } // Keep track of whether we're inside a conditional expression else if is_conditional(expr) { self.depth += 1; walk_expr(self, expr); self.depth -= 1; return; } walk_expr(self, expr); } } // Check whether a variable is initialized to zero at the start of a loop. struct InitializeVisitor<'v, 't: 'v> { cx: &'v LateContext<'v, 't>, // context reference end_expr: &'v Expr, // the for loop. Stop scanning here. var_id: NodeId, state: VarState, name: Option, depth: u32, // depth of conditional expressions done: bool } impl<'v, 't> Visitor<'v> for InitializeVisitor<'v, 't> { fn visit_decl(&mut self, decl: &'v Decl) { // Look for declarations of the variable if let DeclLocal(ref local) = decl.node { if local.pat.id == self.var_id { if let PatIdent(_, ref ident, _) = local.pat.node { self.name = Some(ident.node.name); self.state = if let Some(ref init) = local.init { if is_integer_literal(init, 0) { VarState::Warn } else { VarState::Declared } } else { VarState::Declared } } } } walk_decl(self, decl); } fn visit_expr(&mut self, expr: &'v Expr) { if self.state == VarState::DontWarn || expr == self.end_expr { self.done = true; } // No need to visit expressions before the variable is // declared or after we've rejected it. if self.state == VarState::IncrOnce || self.done { return; } // If node is the desired variable, see how it's used if var_def_id(self.cx, expr) == Some(self.var_id) { if let Some(parent) = get_parent_expr(self.cx, expr) { match parent.node { ExprAssignOp(_, ref lhs, _) if lhs.id == expr.id => { self.state = VarState::DontWarn; }, ExprAssign(ref lhs, ref rhs) if lhs.id == expr.id => { self.state = if is_integer_literal(rhs, 0) && self.depth == 0 { VarState::Warn } else { VarState::DontWarn }}, ExprAddrOf(mutability,_) if mutability == MutMutable => self.state = VarState::DontWarn, _ => () } } } // If there are other loops between the declaration and the target loop, give up else if is_loop(expr) { self.state = VarState::DontWarn; self.done = true; return; } // Keep track of whether we're inside a conditional expression else if is_conditional(expr) { self.depth += 1; walk_expr(self, expr); self.depth -= 1; return; } walk_expr(self, expr); } } fn var_def_id(cx: &LateContext, expr: &Expr) -> Option { if let Some(path_res) = cx.tcx.def_map.borrow().get(&expr.id) { if let DefLocal(_, node_id) = path_res.base_def { return Some(node_id) } } None } fn is_loop(expr: &Expr) -> bool { match expr.node { ExprLoop(..) | ExprWhile(..) => true, _ => false } } fn is_conditional(expr: &Expr) -> bool { match expr.node { ExprIf(..) | ExprMatch(..) => true, _ => false } }