use syntax::ast::*; use rustc::lint::{Context, LintPass, LintArray, Lint}; use syntax::codemap::Span; use syntax::visit::{Visitor, FnKind, walk_ty}; use utils::{in_external_macro, span_lint}; use std::collections::HashSet; use std::iter::FromIterator; declare_lint!(pub NEEDLESS_LIFETIMES, Warn, "Warn on explicit lifetimes when elision rules would apply"); #[derive(Copy,Clone)] pub struct LifetimePass; impl LintPass for LifetimePass { fn get_lints(&self) -> LintArray { lint_array!(NEEDLESS_LIFETIMES) } fn check_fn(&mut self, cx: &Context, kind: FnKind, decl: &FnDecl, _: &Block, span: Span, _: NodeId) { if in_external_macro(cx, span) { return; } if could_use_elision(kind, decl) { span_lint(cx, NEEDLESS_LIFETIMES, span, "explicit lifetimes given in parameter types where they could be elided"); } } } /// The lifetime of a &-reference. #[derive(PartialEq, Eq, Hash, Debug)] enum RefLt { Unnamed, Static, Named(Name), } use self::RefLt::*; fn could_use_elision(kind: FnKind, func: &FnDecl) -> bool { // There are two scenarios where elision works: // * no output references, all input references have different LT // * output references, exactly one input reference with same LT // these will collect all the lifetimes for references in arg/return types let mut input_visitor = RefVisitor(Vec::new()); let mut output_visitor = RefVisitor(Vec::new()); // extract lifetime in "self" argument for methods (there is a "self" argument // in func.inputs, but its type is TyInfer) if let FnKind::FkMethod(_, sig, _) = kind { match sig.explicit_self.node { SelfRegion(ref opt_lt, _, _) => input_visitor.record(opt_lt), SelfExplicit(ref ty, _) => walk_ty(&mut input_visitor, ty), _ => { } } } // extract lifetimes in input argument types for arg in &func.inputs { walk_ty(&mut input_visitor, &*arg.ty); } // extract lifetimes in output type if let Return(ref ty) = func.output { walk_ty(&mut output_visitor, ty); } let input_lts = input_visitor.into_vec(); let output_lts = output_visitor.into_vec(); // no input lifetimes? easy case! if input_lts.is_empty() { return false; } else if output_lts.is_empty() { // no output lifetimes, check distinctness of input lifetimes // only one reference with unnamed lifetime, ok if input_lts.len() == 1 && input_lts[0] == Unnamed { return false; } // we have no output reference, so we only need all distinct lifetimes if input_lts.len() == unique_lifetimes(&input_lts) { return true; } } else { // we have output references, so we need one input reference, // and all output lifetimes must be the same if unique_lifetimes(&output_lts) > 1 { return false; } if input_lts.len() == 1 { match (&input_lts[0], &output_lts[0]) { (&Named(n1), &Named(n2)) if n1 == n2 => { return true; } (&Named(_), &Unnamed) => { return true; } (&Unnamed, &Named(_)) => { return true; } _ => { } // already elided, different named lifetimes // or something static going on } } } false } /// Number of unique lifetimes in the given vector. fn unique_lifetimes(lts: &Vec) -> usize { lts.iter().collect::>().len() } /// A visitor usable for syntax::visit::walk_ty(). struct RefVisitor(Vec); impl RefVisitor { fn record(&mut self, lifetime: &Option) { if let &Some(ref lt) = lifetime { if lt.name.as_str() == "'static" { self.0.push(Static); } else { self.0.push(Named(lt.name)); } } else { self.0.push(Unnamed); } } fn into_vec(self) -> Vec { self.0 } } impl<'v> Visitor<'v> for RefVisitor { fn visit_opt_lifetime_ref(&mut self, _: Span, lifetime: &'v Option) { self.record(lifetime); } }