use rustc_front::hir::*; use rustc::lint::*; use rustc::middle::ty; use rustc::middle::subst::{Subst, TypeSpace}; use std::iter; use std::borrow::Cow; use utils::{snippet, span_lint, span_note_and_lint, match_path, match_type, walk_ptrs_ty_depth, walk_ptrs_ty}; use utils::{OPTION_PATH, RESULT_PATH, STRING_PATH}; use self::SelfKind::*; use self::OutType::*; #[derive(Clone)] pub struct MethodsPass; /// **What it does:** This lint checks for `.unwrap()` calls on `Option`s. It is `Allow` by default. /// /// **Why is this bad?** Usually it is better to handle the `None` case, or to at least call `.expect(_)` with a more helpful message. Still, for a lot of quick-and-dirty code, `unwrap` is a good choice, which is why this lint is `Allow` by default. /// /// **Known problems:** None /// /// **Example:** `x.unwrap()` declare_lint!(pub OPTION_UNWRAP_USED, Allow, "using `Option.unwrap()`, which should at least get a better message using `expect()`"); /// **What it does:** This lint checks for `.unwrap()` calls on `Result`s. It is `Allow` by default. /// /// **Why is this bad?** `result.unwrap()` will let the thread panic on `Err` values. Normally, you want to implement more sophisticated error handling, and propagate errors upwards with `try!`. /// /// Even if you want to panic on errors, not all `Error`s implement good messages on display. Therefore it may be beneficial to look at the places where they may get displayed. Activate this lint to do just that. /// /// **Known problems:** None /// /// **Example:** `x.unwrap()` declare_lint!(pub RESULT_UNWRAP_USED, Allow, "using `Result.unwrap()`, which might be better handled"); /// **What it does:** This lint checks for `.to_string()` method calls on values of type `&str`. It is `Warn` by default. /// /// **Why is this bad?** This uses the whole formatting machinery just to clone a string. Using `.to_owned()` is lighter on resources. You can also consider using a [`Cow<'a, str>`](http://doc.rust-lang.org/std/borrow/enum.Cow.html) instead in some cases. /// /// **Known problems:** None /// /// **Example:** `s.to_string()` where `s: &str` declare_lint!(pub STR_TO_STRING, Warn, "using `to_string()` on a str, which should be `to_owned()`"); /// **What it does:** This lint checks for `.to_string()` method calls on values of type `String`. It is `Warn` by default. /// /// **Why is this bad?** As our string is already owned, this whole operation is basically a no-op, but still creates a clone of the string (which, if really wanted, should be done with `.clone()`). /// /// **Known problems:** None /// /// **Example:** `s.to_string()` where `s: String` declare_lint!(pub STRING_TO_STRING, Warn, "calling `String.to_string()` which is a no-op"); /// **What it does:** This lint checks for methods that should live in a trait implementation of a `std` trait (see [llogiq's blog post](http://llogiq.github.io/2015/07/30/traits.html) for further information) instead of an inherent implementation. It is `Warn` by default. /// /// **Why is this bad?** Implementing the traits improve ergonomics for users of the code, often with very little cost. Also people seeing a `mul(..)` method may expect `*` to work equally, so you should have good reason to disappoint them. /// /// **Known problems:** None /// /// **Example:** /// ``` /// struct X; /// impl X { /// fn add(&self, other: &X) -> X { .. } /// } /// ``` declare_lint!(pub SHOULD_IMPLEMENT_TRAIT, Warn, "defining a method that should be implementing a std trait"); /// **What it does:** This lint checks for methods with certain name prefixes and `Warn`s (by default) if the prefix doesn't match how self is taken. The actual rules are: /// /// |Prefix |`self` taken | /// |-------|--------------------| /// |`as_` |`&self` or &mut self| /// |`from_`| none | /// |`into_`|`self` | /// |`is_` |`&self` or none | /// |`to_` |`&self` | /// /// **Why is this bad?** Consistency breeds readability. If you follow the conventions, your users won't be surprised that they e.g. need to supply a mutable reference to a `as_`.. function. /// /// **Known problems:** None /// /// **Example** /// /// ``` /// impl X { /// fn as_str(self) -> &str { .. } /// } /// ``` declare_lint!(pub WRONG_SELF_CONVENTION, Warn, "defining a method named with an established prefix (like \"into_\") that takes \ `self` with the wrong convention"); /// **What it does:** This is the same as [`wrong_self_convention`](#wrong_self_convention), but for public items. This lint is `Allow` by default. /// /// **Why is this bad?** See [`wrong_self_convention`](#wrong_self_convention). /// /// **Known problems:** Actually *renaming* the function may break clients if the function is part of the public interface. In that case, be mindful of the stability guarantees you've given your users. /// /// **Example:** /// ``` /// impl X { /// pub fn as_str(self) -> &str { .. } /// } /// ``` declare_lint!(pub WRONG_PUB_SELF_CONVENTION, Allow, "defining a public method named with an established prefix (like \"into_\") that takes \ `self` with the wrong convention"); declare_lint!(pub OK_EXPECT, Warn, "using `ok().expect()`, which gives worse error messages than \ calling `expect` directly on the Result"); declare_lint!(pub OPTION_MAP_UNWRAP_OR, Warn, "using `Option.map(f).unwrap_or(a)`, which is more succinctly expressed as \ `map_or(a, f)`)"); declare_lint!(pub OPTION_MAP_UNWRAP_OR_ELSE, Warn, "using `Option.map(f).unwrap_or_else(g)`, which is more succinctly expressed as \ `map_or_else(g, f)`)"); impl LintPass for MethodsPass { fn get_lints(&self) -> LintArray { lint_array!(OPTION_UNWRAP_USED, RESULT_UNWRAP_USED, STR_TO_STRING, STRING_TO_STRING, SHOULD_IMPLEMENT_TRAIT, WRONG_SELF_CONVENTION, OK_EXPECT, OPTION_MAP_UNWRAP_OR, OPTION_MAP_UNWRAP_OR_ELSE) } } impl LateLintPass for MethodsPass { fn check_expr(&mut self, cx: &LateContext, expr: &Expr) { if let ExprMethodCall(ref name, _, ref args) = expr.node { let (obj_ty, ptr_depth) = walk_ptrs_ty_depth(cx.tcx.expr_ty(&args[0])); match &*name.node.as_str() { "unwrap" if match_type(cx, obj_ty, &OPTION_PATH) => { span_lint(cx, OPTION_UNWRAP_USED, expr.span, "used unwrap() on an Option value. If you don't want \ to handle the None case gracefully, consider using \ expect() to provide a better panic message"); }, "unwrap" if match_type(cx, obj_ty, &RESULT_PATH) => { span_lint(cx, RESULT_UNWRAP_USED, expr.span, "used unwrap() on a Result value. Graceful handling \ of Err values is preferred"); }, "to_string" if obj_ty.sty == ty::TyStr => { let mut arg_str = snippet(cx, args[0].span, "_"); if ptr_depth > 1 { arg_str = Cow::Owned(format!( "({}{})", iter::repeat('*').take(ptr_depth - 1).collect::(), arg_str)); } span_lint(cx, STR_TO_STRING, expr.span, &format!( "`{}.to_owned()` is faster", arg_str)); }, "to_string" if match_type(cx, obj_ty, &STRING_PATH) => { span_lint(cx, STRING_TO_STRING, expr.span, "`String.to_string()` is a no-op; use \ `clone()` to make a copy"); }, "expect" => if let ExprMethodCall(ref inner_name, _, ref inner_args) = args[0].node { if inner_name.node.as_str() == "ok" && match_type(cx, cx.tcx.expr_ty(&inner_args[0]), &RESULT_PATH) { let result_type = cx.tcx.expr_ty(&inner_args[0]); if let Some(error_type) = get_error_type(cx, result_type) { if has_debug_impl(error_type, cx) { span_lint(cx, OK_EXPECT, expr.span, "called `ok().expect()` on a Result \ value. You can call `expect` directly \ on the `Result`"); } } } }, // check Option.map(_).unwrap_or(_) "unwrap_or" => if let ExprMethodCall(ref inner_name, _, ref inner_args) = args[0].node { if inner_name.node.as_str() == "map" && match_type(cx, cx.tcx.expr_ty(&inner_args[0]), &OPTION_PATH) { // lint message let msg = "called `map(f).unwrap_or(a)` on an Option value. This can be done \ more directly by calling `map_or(a, f)` instead"; // get args to map() and unwrap_or() let map_arg = snippet(cx, inner_args[1].span, ".."); let unwrap_arg = snippet(cx, args[1].span, ".."); // lint, with note if neither arg is > 1 line and both map() and // unwrap_or() have the same span let multiline = map_arg.lines().count() > 1 || unwrap_arg.lines().count() > 1; let same_span = inner_args[1].span.expn_id == args[1].span.expn_id; if same_span && !multiline { span_note_and_lint( cx, OPTION_MAP_UNWRAP_OR, expr.span, msg, expr.span, &format!("replace this with map_or({1}, {0})", map_arg, unwrap_arg) ); } else if same_span && multiline { span_lint(cx, OPTION_MAP_UNWRAP_OR, expr.span, msg); }; } }, // check Option.map(_).unwrap_or_else(_) "unwrap_or_else" => if let ExprMethodCall(ref inner_name, _, ref inner_args) = args[0].node { if inner_name.node.as_str() == "map" && match_type(cx, cx.tcx.expr_ty(&inner_args[0]), &OPTION_PATH) { // lint message let msg = "called `map(f).unwrap_or_else(g)` on an Option value. This can be \ done more directly by calling `map_or_else(g, f)` instead"; // get args to map() and unwrap_or_else() let map_arg = snippet(cx, inner_args[1].span, ".."); let unwrap_arg = snippet(cx, args[1].span, ".."); // lint, with note if neither arg is > 1 line and both map() and // unwrap_or_else() have the same span let multiline = map_arg.lines().count() > 1 || unwrap_arg.lines().count() > 1; let same_span = inner_args[1].span.expn_id == args[1].span.expn_id; if same_span && !multiline { span_note_and_lint( cx, OPTION_MAP_UNWRAP_OR_ELSE, expr.span, msg, expr.span, &format!("replace this with map_or_else({1}, {0})", map_arg, unwrap_arg) ); } else if same_span && multiline { span_lint(cx, OPTION_MAP_UNWRAP_OR_ELSE, expr.span, msg); }; } }, _ => {}, } } } fn check_item(&mut self, cx: &LateContext, item: &Item) { if let ItemImpl(_, _, _, None, ref ty, ref items) = item.node { for implitem in items { let name = implitem.name; if let ImplItemKind::Method(ref sig, _) = implitem.node { // check missing trait implementations for &(method_name, n_args, self_kind, out_type, trait_name) in &TRAIT_METHODS { if_let_chain! { [ name.as_str() == method_name, sig.decl.inputs.len() == n_args, out_type.matches(&sig.decl.output), self_kind.matches(&sig.explicit_self.node, false) ], { span_lint(cx, SHOULD_IMPLEMENT_TRAIT, implitem.span, &format!( "defining a method called `{}` on this type; consider implementing \ the `{}` trait or choosing a less ambiguous name", name, trait_name)); } } } // check conventions w.r.t. conversion method names and predicates let is_copy = is_copy(cx, &ty, &item); for &(prefix, self_kinds) in &CONVENTIONS { if name.as_str().starts_with(prefix) && !self_kinds.iter().any(|k| k.matches(&sig.explicit_self.node, is_copy)) { let lint = if item.vis == Visibility::Public { WRONG_PUB_SELF_CONVENTION } else { WRONG_SELF_CONVENTION }; span_lint(cx, lint, sig.explicit_self.span, &format!( "methods called `{}*` usually take {}; consider choosing a less \ ambiguous name", prefix, &self_kinds.iter().map(|k| k.description()).collect::>().join(" or "))); } } } } } } } // Given a `Result` type, return its error type (`E`) fn get_error_type<'a>(cx: &LateContext, ty: ty::Ty<'a>) -> Option> { if !match_type(cx, ty, &RESULT_PATH) { return None; } if let ty::TyEnum(_, substs) = ty.sty { if let Some(err_ty) = substs.types.opt_get(TypeSpace, 1) { return Some(err_ty); } } None } // This checks whether a given type is known to implement Debug. It's // conservative, i.e. it should not return false positives, but will return // false negatives. fn has_debug_impl<'a, 'b>(ty: ty::Ty<'a>, cx: &LateContext<'b, 'a>) -> bool { let no_ref_ty = walk_ptrs_ty(ty); let debug = match cx.tcx.lang_items.debug_trait() { Some(debug) => debug, None => return false }; let debug_def = cx.tcx.lookup_trait_def(debug); let mut debug_impl_exists = false; debug_def.for_each_relevant_impl(cx.tcx, no_ref_ty, |d| { let self_ty = &cx.tcx.impl_trait_ref(d).and_then(|im| im.substs.self_ty()); if let Some(self_ty) = *self_ty { if !self_ty.flags.get().contains(ty::TypeFlags::HAS_PARAMS) { debug_impl_exists = true; } } }); debug_impl_exists } const CONVENTIONS: [(&'static str, &'static [SelfKind]); 5] = [ ("into_", &[ValueSelf]), ("to_", &[RefSelf]), ("as_", &[RefSelf, RefMutSelf]), ("is_", &[RefSelf, NoSelf]), ("from_", &[NoSelf]), ]; const TRAIT_METHODS: [(&'static str, usize, SelfKind, OutType, &'static str); 30] = [ ("add", 2, ValueSelf, AnyType, "std::ops::Add"), ("sub", 2, ValueSelf, AnyType, "std::ops::Sub"), ("mul", 2, ValueSelf, AnyType, "std::ops::Mul"), ("div", 2, ValueSelf, AnyType, "std::ops::Div"), ("rem", 2, ValueSelf, AnyType, "std::ops::Rem"), ("shl", 2, ValueSelf, AnyType, "std::ops::Shl"), ("shr", 2, ValueSelf, AnyType, "std::ops::Shr"), ("bitand", 2, ValueSelf, AnyType, "std::ops::BitAnd"), ("bitor", 2, ValueSelf, AnyType, "std::ops::BitOr"), ("bitxor", 2, ValueSelf, AnyType, "std::ops::BitXor"), ("neg", 1, ValueSelf, AnyType, "std::ops::Neg"), ("not", 1, ValueSelf, AnyType, "std::ops::Not"), ("drop", 1, RefMutSelf, UnitType, "std::ops::Drop"), ("index", 2, RefSelf, RefType, "std::ops::Index"), ("index_mut", 2, RefMutSelf, RefType, "std::ops::IndexMut"), ("deref", 1, RefSelf, RefType, "std::ops::Deref"), ("deref_mut", 1, RefMutSelf, RefType, "std::ops::DerefMut"), ("clone", 1, RefSelf, AnyType, "std::clone::Clone"), ("borrow", 1, RefSelf, RefType, "std::borrow::Borrow"), ("borrow_mut", 1, RefMutSelf, RefType, "std::borrow::BorrowMut"), ("as_ref", 1, RefSelf, RefType, "std::convert::AsRef"), ("as_mut", 1, RefMutSelf, RefType, "std::convert::AsMut"), ("eq", 2, RefSelf, BoolType, "std::cmp::PartialEq"), ("cmp", 2, RefSelf, AnyType, "std::cmp::Ord"), ("default", 0, NoSelf, AnyType, "std::default::Default"), ("hash", 2, RefSelf, UnitType, "std::hash::Hash"), ("next", 1, RefMutSelf, AnyType, "std::iter::Iterator"), ("into_iter", 1, ValueSelf, AnyType, "std::iter::IntoIterator"), ("from_iter", 1, NoSelf, AnyType, "std::iter::FromIterator"), ("from_str", 1, NoSelf, AnyType, "std::str::FromStr"), ]; #[derive(Clone, Copy)] enum SelfKind { ValueSelf, RefSelf, RefMutSelf, NoSelf, } impl SelfKind { fn matches(&self, slf: &ExplicitSelf_, allow_value_for_ref: bool) -> bool { match (self, slf) { (&ValueSelf, &SelfValue(_)) => true, (&RefSelf, &SelfRegion(_, Mutability::MutImmutable, _)) => true, (&RefMutSelf, &SelfRegion(_, Mutability::MutMutable, _)) => true, (&RefSelf, &SelfValue(_)) => allow_value_for_ref, (&RefMutSelf, &SelfValue(_)) => allow_value_for_ref, (&NoSelf, &SelfStatic) => true, (_, &SelfExplicit(ref ty, _)) => self.matches_explicit_type(ty, allow_value_for_ref), _ => false } } fn matches_explicit_type(&self, ty: &Ty, allow_value_for_ref: bool) -> bool { match (self, &ty.node) { (&ValueSelf, &TyPath(..)) => true, (&RefSelf, &TyRptr(_, MutTy { mutbl: Mutability::MutImmutable, .. })) => true, (&RefMutSelf, &TyRptr(_, MutTy { mutbl: Mutability::MutMutable, .. })) => true, (&RefSelf, &TyPath(..)) => allow_value_for_ref, (&RefMutSelf, &TyPath(..)) => allow_value_for_ref, _ => false } } fn description(&self) -> &'static str { match *self { ValueSelf => "self by value", RefSelf => "self by reference", RefMutSelf => "self by mutable reference", NoSelf => "no self", } } } #[derive(Clone, Copy)] enum OutType { UnitType, BoolType, AnyType, RefType, } impl OutType { fn matches(&self, ty: &FunctionRetTy) -> bool { match (self, ty) { (&UnitType, &DefaultReturn(_)) => true, (&UnitType, &Return(ref ty)) if ty.node == TyTup(vec![]) => true, (&BoolType, &Return(ref ty)) if is_bool(ty) => true, (&AnyType, &Return(ref ty)) if ty.node != TyTup(vec![]) => true, (&RefType, &Return(ref ty)) => { if let TyRptr(_, _) = ty.node { true } else { false } } _ => false } } } fn is_bool(ty: &Ty) -> bool { if let TyPath(None, ref p) = ty.node { if match_path(p, &["bool"]) { return true; } } false } fn is_copy(cx: &LateContext, ast_ty: &Ty, item: &Item) -> bool { match cx.tcx.ast_ty_to_ty_cache.borrow().get(&ast_ty.id) { None => false, Some(ty) => { let env = ty::ParameterEnvironment::for_item(cx.tcx, item.id); !ty.subst(cx.tcx, &env.free_substs).moves_by_default(&env, ast_ty.span) } } }