//! lint when there is a large size difference between variants on an enum use clippy_utils::source::snippet_with_applicability; use clippy_utils::{diagnostics::span_lint_and_then, ty::approx_ty_size, ty::is_copy}; use rustc_errors::Applicability; use rustc_hir::{Item, ItemKind}; use rustc_lint::{LateContext, LateLintPass}; use rustc_middle::lint::in_external_macro; use rustc_middle::ty::{Adt, AdtDef, GenericArg, List, Ty}; use rustc_session::{declare_tool_lint, impl_lint_pass}; use rustc_span::source_map::Span; declare_clippy_lint! { /// ### What it does /// Checks for large size differences between variants on /// `enum`s. /// /// ### Why is this bad? /// Enum size is bounded by the largest variant. Having one /// large variant can penalize the memory layout of that enum. /// /// ### Known problems /// This lint obviously cannot take the distribution of /// variants in your running program into account. It is possible that the /// smaller variants make up less than 1% of all instances, in which case /// the overhead is negligible and the boxing is counter-productive. Always /// measure the change this lint suggests. /// /// For types that implement `Copy`, the suggestion to `Box` a variant's /// data would require removing the trait impl. The types can of course /// still be `Clone`, but that is worse ergonomically. Depending on the /// use case it may be possible to store the large data in an auxiliary /// structure (e.g. Arena or ECS). /// /// The lint will ignore the impact of generic types to the type layout by /// assuming every type parameter is zero-sized. Depending on your use case, /// this may lead to a false positive. /// /// ### Example /// ```rust /// enum Test { /// A(i32), /// B([i32; 8000]), /// } /// ``` /// /// Use instead: /// ```rust /// // Possibly better /// enum Test2 { /// A(i32), /// B(Box<[i32; 8000]>), /// } /// ``` #[clippy::version = "pre 1.29.0"] pub LARGE_ENUM_VARIANT, perf, "large size difference between variants on an enum" } #[derive(Copy, Clone)] pub struct LargeEnumVariant { maximum_size_difference_allowed: u64, } impl LargeEnumVariant { #[must_use] pub fn new(maximum_size_difference_allowed: u64) -> Self { Self { maximum_size_difference_allowed, } } } struct FieldInfo { ind: usize, size: u64, } struct VariantInfo { ind: usize, size: u64, fields_size: Vec, } fn variants_size<'tcx>( cx: &LateContext<'tcx>, adt: AdtDef<'tcx>, subst: &'tcx List>, ) -> Vec { let mut variants_size = adt .variants() .iter() .enumerate() .map(|(i, variant)| { let mut fields_size = variant .fields .iter() .enumerate() .map(|(i, f)| FieldInfo { ind: i, size: approx_ty_size(cx, f.ty(cx.tcx, subst)), }) .collect::>(); fields_size.sort_by(|a, b| (a.size.cmp(&b.size))); VariantInfo { ind: i, size: fields_size.iter().map(|info| info.size).sum(), fields_size, } }) .collect::>(); variants_size.sort_by(|a, b| (b.size.cmp(&a.size))); variants_size } impl_lint_pass!(LargeEnumVariant => [LARGE_ENUM_VARIANT]); impl<'tcx> LateLintPass<'tcx> for LargeEnumVariant { fn check_item(&mut self, cx: &LateContext<'tcx>, item: &Item<'tcx>) { if in_external_macro(cx.tcx.sess, item.span) { return; } if let ItemKind::Enum(ref def, _) = item.kind { let ty = cx.tcx.type_of(item.def_id); let Adt(adt, subst) = ty.kind() else { panic!("already checked whether this is an enum") }; if adt.variants().len() <= 1 { return; } let variants_size = variants_size(cx, *adt, subst); let mut difference = variants_size[0].size - variants_size[1].size; if difference > self.maximum_size_difference_allowed { let help_text = "consider boxing the large fields to reduce the total size of the enum"; span_lint_and_then( cx, LARGE_ENUM_VARIANT, item.span, "large size difference between variants", |diag| { diag.span_label( item.span, format!("the entire enum is at least {} bytes", approx_ty_size(cx, ty)), ); diag.span_label( def.variants[variants_size[0].ind].span, format!("the largest variant contains at least {} bytes", variants_size[0].size), ); diag.span_label( def.variants[variants_size[1].ind].span, &if variants_size[1].fields_size.is_empty() { "the second-largest variant carries no data at all".to_owned() } else { format!( "the second-largest variant contains at least {} bytes", variants_size[1].size ) }, ); let fields = def.variants[variants_size[0].ind].data.fields(); let mut applicability = Applicability::MaybeIncorrect; if is_copy(cx, ty) || maybe_copy(cx, ty) { diag.span_note( item.ident.span, "boxing a variant would require the type no longer be `Copy`", ); } else { let sugg: Vec<(Span, String)> = variants_size[0] .fields_size .iter() .rev() .map_while(|val| { if difference > self.maximum_size_difference_allowed { difference = difference.saturating_sub(val.size); Some(( fields[val.ind].ty.span, format!( "Box<{}>", snippet_with_applicability( cx, fields[val.ind].ty.span, "..", &mut applicability ) .into_owned() ), )) } else { None } }) .collect(); if !sugg.is_empty() { diag.multipart_suggestion(help_text, sugg, Applicability::MaybeIncorrect); return; } } diag.span_help(def.variants[variants_size[0].ind].span, help_text); }, ); } } } } fn maybe_copy<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> bool { if let Adt(_def, substs) = ty.kind() && substs.types().next().is_some() && let Some(copy_trait) = cx.tcx.lang_items().copy_trait() { return cx.tcx.non_blanket_impls_for_ty(copy_trait, ty).next().is_some(); } false }