use crate::utils::paths; use crate::utils::{ get_trait_def_id, is_allowed, is_automatically_derived, is_copy, match_path, span_lint_and_help, span_lint_and_note, span_lint_and_then, }; use if_chain::if_chain; use rustc_hir::def_id::DefId; use rustc_hir::intravisit::{walk_expr, walk_fn, walk_item, FnKind, NestedVisitorMap, Visitor}; use rustc_hir::{ BlockCheckMode, BodyId, Expr, ExprKind, FnDecl, HirId, Item, ItemKind, TraitRef, UnsafeSource, Unsafety, }; use rustc_lint::{LateContext, LateLintPass}; use rustc_middle::hir::map::Map; use rustc_middle::ty::{self, Ty}; use rustc_session::{declare_lint_pass, declare_tool_lint}; use rustc_span::source_map::Span; declare_clippy_lint! { /// **What it does:** Checks for deriving `Hash` but implementing `PartialEq` /// explicitly or vice versa. /// /// **Why is this bad?** The implementation of these traits must agree (for /// example for use with `HashMap`) so it’s probably a bad idea to use a /// default-generated `Hash` implementation with an explicitly defined /// `PartialEq`. In particular, the following must hold for any type: /// /// ```text /// k1 == k2 ⇒ hash(k1) == hash(k2) /// ``` /// /// **Known problems:** None. /// /// **Example:** /// ```ignore /// #[derive(Hash)] /// struct Foo; /// /// impl PartialEq for Foo { /// ... /// } /// ``` pub DERIVE_HASH_XOR_EQ, correctness, "deriving `Hash` but implementing `PartialEq` explicitly" } declare_clippy_lint! { /// **What it does:** Checks for deriving `Ord` but implementing `PartialOrd` /// explicitly or vice versa. /// /// **Why is this bad?** The implementation of these traits must agree (for /// example for use with `sort`) so it’s probably a bad idea to use a /// default-generated `Ord` implementation with an explicitly defined /// `PartialOrd`. In particular, the following must hold for any type /// implementing `Ord`: /// /// ```text /// k1.cmp(&k2) == k1.partial_cmp(&k2).unwrap() /// ``` /// /// **Known problems:** None. /// /// **Example:** /// /// ```rust,ignore /// #[derive(Ord, PartialEq, Eq)] /// struct Foo; /// /// impl PartialOrd for Foo { /// ... /// } /// ``` /// Use instead: /// ```rust,ignore /// #[derive(PartialEq, Eq)] /// struct Foo; /// /// impl PartialOrd for Foo { /// fn partial_cmp(&self, other: &Foo) -> Option { /// Some(self.cmp(other)) /// } /// } /// /// impl Ord for Foo { /// ... /// } /// ``` /// or, if you don't need a custom ordering: /// ```rust,ignore /// #[derive(Ord, PartialOrd, PartialEq, Eq)] /// struct Foo; /// ``` pub DERIVE_ORD_XOR_PARTIAL_ORD, correctness, "deriving `Ord` but implementing `PartialOrd` explicitly" } declare_clippy_lint! { /// **What it does:** Checks for explicit `Clone` implementations for `Copy` /// types. /// /// **Why is this bad?** To avoid surprising behaviour, these traits should /// agree and the behaviour of `Copy` cannot be overridden. In almost all /// situations a `Copy` type should have a `Clone` implementation that does /// nothing more than copy the object, which is what `#[derive(Copy, Clone)]` /// gets you. /// /// **Known problems:** Bounds of generic types are sometimes wrong: https://github.com/rust-lang/rust/issues/26925 /// /// **Example:** /// ```rust,ignore /// #[derive(Copy)] /// struct Foo; /// /// impl Clone for Foo { /// // .. /// } /// ``` pub EXPL_IMPL_CLONE_ON_COPY, pedantic, "implementing `Clone` explicitly on `Copy` types" } declare_clippy_lint! { /// **What it does:** Checks for deriving `serde::Deserialize` on a type that /// has methods using `unsafe`. /// /// **Why is this bad?** Deriving `serde::Deserialize` will create a constructor /// that may violate invariants hold by another constructor. /// /// **Known problems:** None. /// /// **Example:** /// /// ```rust,ignore /// use serde::Deserialize; /// /// #[derive(Deserialize)] /// pub struct Foo { /// // .. /// } /// /// impl Foo { /// pub fn new() -> Self { /// // setup here .. /// } /// /// pub unsafe fn parts() -> (&str, &str) { /// // assumes invariants hold /// } /// } /// ``` pub UNSAFE_DERIVE_DESERIALIZE, pedantic, "deriving `serde::Deserialize` on a type that has methods using `unsafe`" } declare_lint_pass!(Derive => [ EXPL_IMPL_CLONE_ON_COPY, DERIVE_HASH_XOR_EQ, DERIVE_ORD_XOR_PARTIAL_ORD, UNSAFE_DERIVE_DESERIALIZE ]); impl<'tcx> LateLintPass<'tcx> for Derive { fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx Item<'_>) { if let ItemKind::Impl { of_trait: Some(ref trait_ref), .. } = item.kind { let ty = cx.tcx.type_of(cx.tcx.hir().local_def_id(item.hir_id)); let is_automatically_derived = is_automatically_derived(&*item.attrs); check_hash_peq(cx, item.span, trait_ref, ty, is_automatically_derived); check_ord_partial_ord(cx, item.span, trait_ref, ty, is_automatically_derived); if is_automatically_derived { check_unsafe_derive_deserialize(cx, item, trait_ref, ty); } else { check_copy_clone(cx, item, trait_ref, ty); } } } } /// Implementation of the `DERIVE_HASH_XOR_EQ` lint. fn check_hash_peq<'tcx>( cx: &LateContext<'tcx>, span: Span, trait_ref: &TraitRef<'_>, ty: Ty<'tcx>, hash_is_automatically_derived: bool, ) { if_chain! { if match_path(&trait_ref.path, &paths::HASH); if let Some(peq_trait_def_id) = cx.tcx.lang_items().eq_trait(); if let Some(def_id) = &trait_ref.trait_def_id(); if !def_id.is_local(); then { // Look for the PartialEq implementations for `ty` cx.tcx.for_each_relevant_impl(peq_trait_def_id, ty, |impl_id| { let peq_is_automatically_derived = is_automatically_derived(&cx.tcx.get_attrs(impl_id)); if peq_is_automatically_derived == hash_is_automatically_derived { return; } let trait_ref = cx.tcx.impl_trait_ref(impl_id).expect("must be a trait implementation"); // Only care about `impl PartialEq for Foo` // For `impl PartialEq for A, input_types is [A, B] if trait_ref.substs.type_at(1) == ty { let mess = if peq_is_automatically_derived { "you are implementing `Hash` explicitly but have derived `PartialEq`" } else { "you are deriving `Hash` but have implemented `PartialEq` explicitly" }; span_lint_and_then( cx, DERIVE_HASH_XOR_EQ, span, mess, |diag| { if let Some(local_def_id) = impl_id.as_local() { let hir_id = cx.tcx.hir().local_def_id_to_hir_id(local_def_id); diag.span_note( cx.tcx.hir().span(hir_id), "`PartialEq` implemented here" ); } } ); } }); } } } /// Implementation of the `DERIVE_ORD_XOR_PARTIAL_ORD` lint. fn check_ord_partial_ord<'tcx>( cx: &LateContext<'tcx>, span: Span, trait_ref: &TraitRef<'_>, ty: Ty<'tcx>, ord_is_automatically_derived: bool, ) { if_chain! { if let Some(ord_trait_def_id) = get_trait_def_id(cx, &paths::ORD); if let Some(partial_ord_trait_def_id) = cx.tcx.lang_items().partial_ord_trait(); if let Some(def_id) = &trait_ref.trait_def_id(); if *def_id == ord_trait_def_id; then { // Look for the PartialOrd implementations for `ty` cx.tcx.for_each_relevant_impl(partial_ord_trait_def_id, ty, |impl_id| { let partial_ord_is_automatically_derived = is_automatically_derived(&cx.tcx.get_attrs(impl_id)); if partial_ord_is_automatically_derived == ord_is_automatically_derived { return; } let trait_ref = cx.tcx.impl_trait_ref(impl_id).expect("must be a trait implementation"); // Only care about `impl PartialOrd for Foo` // For `impl PartialOrd for A, input_types is [A, B] if trait_ref.substs.type_at(1) == ty { let mess = if partial_ord_is_automatically_derived { "you are implementing `Ord` explicitly but have derived `PartialOrd`" } else { "you are deriving `Ord` but have implemented `PartialOrd` explicitly" }; span_lint_and_then( cx, DERIVE_ORD_XOR_PARTIAL_ORD, span, mess, |diag| { if let Some(local_def_id) = impl_id.as_local() { let hir_id = cx.tcx.hir().local_def_id_to_hir_id(local_def_id); diag.span_note( cx.tcx.hir().span(hir_id), "`PartialOrd` implemented here" ); } } ); } }); } } } /// Implementation of the `EXPL_IMPL_CLONE_ON_COPY` lint. fn check_copy_clone<'tcx>(cx: &LateContext<'tcx>, item: &Item<'_>, trait_ref: &TraitRef<'_>, ty: Ty<'tcx>) { if match_path(&trait_ref.path, &paths::CLONE_TRAIT) { if !is_copy(cx, ty) { return; } match *ty.kind() { ty::Adt(def, _) if def.is_union() => return, // Some types are not Clone by default but could be cloned “by hand” if necessary ty::Adt(def, substs) => { for variant in &def.variants { for field in &variant.fields { if let ty::FnDef(..) = field.ty(cx.tcx, substs).kind() { return; } } for subst in substs { if let ty::subst::GenericArgKind::Type(subst) = subst.unpack() { if let ty::Param(_) = subst.kind() { return; } } } } }, _ => (), } span_lint_and_note( cx, EXPL_IMPL_CLONE_ON_COPY, item.span, "you are implementing `Clone` explicitly on a `Copy` type", Some(item.span), "consider deriving `Clone` or removing `Copy`", ); } } /// Implementation of the `UNSAFE_DERIVE_DESERIALIZE` lint. fn check_unsafe_derive_deserialize<'tcx>( cx: &LateContext<'tcx>, item: &Item<'_>, trait_ref: &TraitRef<'_>, ty: Ty<'tcx>, ) { fn item_from_def_id<'tcx>(cx: &LateContext<'tcx>, def_id: DefId) -> &'tcx Item<'tcx> { let hir_id = cx.tcx.hir().local_def_id_to_hir_id(def_id.expect_local()); cx.tcx.hir().expect_item(hir_id) } fn has_unsafe<'tcx>(cx: &LateContext<'tcx>, item: &'tcx Item<'_>) -> bool { let mut visitor = UnsafeVisitor { cx, has_unsafe: false }; walk_item(&mut visitor, item); visitor.has_unsafe } if_chain! { if match_path(&trait_ref.path, &paths::SERDE_DESERIALIZE); if let ty::Adt(def, _) = ty.kind(); if let Some(local_def_id) = def.did.as_local(); let adt_hir_id = cx.tcx.hir().local_def_id_to_hir_id(local_def_id); if !is_allowed(cx, UNSAFE_DERIVE_DESERIALIZE, adt_hir_id); if cx.tcx.inherent_impls(def.did) .iter() .map(|imp_did| item_from_def_id(cx, *imp_did)) .any(|imp| has_unsafe(cx, imp)); then { span_lint_and_help( cx, UNSAFE_DERIVE_DESERIALIZE, item.span, "you are deriving `serde::Deserialize` on a type that has methods using `unsafe`", None, "consider implementing `serde::Deserialize` manually. See https://serde.rs/impl-deserialize.html" ); } } } struct UnsafeVisitor<'a, 'tcx> { cx: &'a LateContext<'tcx>, has_unsafe: bool, } impl<'tcx> Visitor<'tcx> for UnsafeVisitor<'_, 'tcx> { type Map = Map<'tcx>; fn visit_fn(&mut self, kind: FnKind<'tcx>, decl: &'tcx FnDecl<'_>, body_id: BodyId, span: Span, id: HirId) { if self.has_unsafe { return; } if_chain! { if let Some(header) = kind.header(); if let Unsafety::Unsafe = header.unsafety; then { self.has_unsafe = true; } } walk_fn(self, kind, decl, body_id, span, id); } fn visit_expr(&mut self, expr: &'tcx Expr<'_>) { if self.has_unsafe { return; } if let ExprKind::Block(block, _) = expr.kind { match block.rules { BlockCheckMode::UnsafeBlock(UnsafeSource::UserProvided) | BlockCheckMode::PushUnsafeBlock(UnsafeSource::UserProvided) | BlockCheckMode::PopUnsafeBlock(UnsafeSource::UserProvided) => { self.has_unsafe = true; }, _ => {}, } } walk_expr(self, expr); } fn nested_visit_map(&mut self) -> NestedVisitorMap { NestedVisitorMap::All(self.cx.tcx.hir()) } }