use crate::consts::{constant_simple, Constant}; use clippy_utils::diagnostics::{span_lint, span_lint_and_help, span_lint_and_sugg}; use clippy_utils::source::snippet; use clippy_utils::ty::match_type; use clippy_utils::{is_expn_of, match_def_path, match_qpath, method_calls, path_to_res, paths, run_lints, SpanlessEq}; use if_chain::if_chain; use rustc_ast::ast::{Crate as AstCrate, ItemKind, LitKind, ModKind, NodeId}; use rustc_ast::visit::FnKind; use rustc_data_structures::fx::{FxHashMap, FxHashSet}; use rustc_errors::Applicability; use rustc_hir as hir; use rustc_hir::def::{DefKind, Res}; use rustc_hir::def_id::DefId; use rustc_hir::hir_id::CRATE_HIR_ID; use rustc_hir::intravisit::{NestedVisitorMap, Visitor}; use rustc_hir::{ BinOpKind, Crate, Expr, ExprKind, HirId, Item, MutTy, Mutability, Node, Path, StmtKind, Ty, TyKind, UnOp, }; use rustc_lint::{EarlyContext, EarlyLintPass, LateContext, LateLintPass}; use rustc_middle::hir::map::Map; use rustc_middle::mir::interpret::ConstValue; use rustc_middle::ty; use rustc_session::{declare_lint_pass, declare_tool_lint, impl_lint_pass}; use rustc_span::source_map::{Span, Spanned}; use rustc_span::symbol::{Symbol, SymbolStr}; use rustc_typeck::hir_ty_to_ty; use std::borrow::{Borrow, Cow}; declare_clippy_lint! { /// **What it does:** Checks for various things we like to keep tidy in clippy. /// /// **Why is this bad?** We like to pretend we're an example of tidy code. /// /// **Known problems:** None. /// /// **Example:** Wrong ordering of the util::paths constants. pub CLIPPY_LINTS_INTERNAL, internal, "various things that will negatively affect your clippy experience" } declare_clippy_lint! { /// **What it does:** Ensures every lint is associated to a `LintPass`. /// /// **Why is this bad?** The compiler only knows lints via a `LintPass`. Without /// putting a lint to a `LintPass::get_lints()`'s return, the compiler will not /// know the name of the lint. /// /// **Known problems:** Only checks for lints associated using the /// `declare_lint_pass!`, `impl_lint_pass!`, and `lint_array!` macros. /// /// **Example:** /// ```rust,ignore /// declare_lint! { pub LINT_1, ... } /// declare_lint! { pub LINT_2, ... } /// declare_lint! { pub FORGOTTEN_LINT, ... } /// // ... /// declare_lint_pass!(Pass => [LINT_1, LINT_2]); /// // missing FORGOTTEN_LINT /// ``` pub LINT_WITHOUT_LINT_PASS, internal, "declaring a lint without associating it in a LintPass" } declare_clippy_lint! { /// **What it does:** Checks for calls to `cx.span_lint*` and suggests to use the `utils::*` /// variant of the function. /// /// **Why is this bad?** The `utils::*` variants also add a link to the Clippy documentation to the /// warning/error messages. /// /// **Known problems:** None. /// /// **Example:** /// Bad: /// ```rust,ignore /// cx.span_lint(LINT_NAME, "message"); /// ``` /// /// Good: /// ```rust,ignore /// utils::span_lint(cx, LINT_NAME, "message"); /// ``` pub COMPILER_LINT_FUNCTIONS, internal, "usage of the lint functions of the compiler instead of the utils::* variant" } declare_clippy_lint! { /// **What it does:** Checks for calls to `cx.outer().expn_data()` and suggests to use /// the `cx.outer_expn_data()` /// /// **Why is this bad?** `cx.outer_expn_data()` is faster and more concise. /// /// **Known problems:** None. /// /// **Example:** /// Bad: /// ```rust,ignore /// expr.span.ctxt().outer().expn_data() /// ``` /// /// Good: /// ```rust,ignore /// expr.span.ctxt().outer_expn_data() /// ``` pub OUTER_EXPN_EXPN_DATA, internal, "using `cx.outer_expn().expn_data()` instead of `cx.outer_expn_data()`" } declare_clippy_lint! { /// **What it does:** Not an actual lint. This lint is only meant for testing our customized internal compiler /// error message by calling `panic`. /// /// **Why is this bad?** ICE in large quantities can damage your teeth /// /// **Known problems:** None /// /// **Example:** /// Bad: /// ```rust,ignore /// 🍦🍦🍦🍦🍦 /// ``` pub PRODUCE_ICE, internal, "this message should not appear anywhere as we ICE before and don't emit the lint" } declare_clippy_lint! { /// **What it does:** Checks for cases of an auto-generated lint without an updated description, /// i.e. `default lint description`. /// /// **Why is this bad?** Indicates that the lint is not finished. /// /// **Known problems:** None /// /// **Example:** /// Bad: /// ```rust,ignore /// declare_lint! { pub COOL_LINT, nursery, "default lint description" } /// ``` /// /// Good: /// ```rust,ignore /// declare_lint! { pub COOL_LINT, nursery, "a great new lint" } /// ``` pub DEFAULT_LINT, internal, "found 'default lint description' in a lint declaration" } declare_clippy_lint! { /// **What it does:** Lints `span_lint_and_then` function calls, where the /// closure argument has only one statement and that statement is a method /// call to `span_suggestion`, `span_help`, `span_note` (using the same /// span), `help` or `note`. /// /// These usages of `span_lint_and_then` should be replaced with one of the /// wrapper functions `span_lint_and_sugg`, span_lint_and_help`, or /// `span_lint_and_note`. /// /// **Why is this bad?** Using the wrapper `span_lint_and_*` functions, is more /// convenient, readable and less error prone. /// /// **Known problems:** None /// /// *Example:** /// Bad: /// ```rust,ignore /// span_lint_and_then(cx, TEST_LINT, expr.span, lint_msg, |diag| { /// diag.span_suggestion( /// expr.span, /// help_msg, /// sugg.to_string(), /// Applicability::MachineApplicable, /// ); /// }); /// span_lint_and_then(cx, TEST_LINT, expr.span, lint_msg, |diag| { /// diag.span_help(expr.span, help_msg); /// }); /// span_lint_and_then(cx, TEST_LINT, expr.span, lint_msg, |diag| { /// diag.help(help_msg); /// }); /// span_lint_and_then(cx, TEST_LINT, expr.span, lint_msg, |diag| { /// diag.span_note(expr.span, note_msg); /// }); /// span_lint_and_then(cx, TEST_LINT, expr.span, lint_msg, |diag| { /// diag.note(note_msg); /// }); /// ``` /// /// Good: /// ```rust,ignore /// span_lint_and_sugg( /// cx, /// TEST_LINT, /// expr.span, /// lint_msg, /// help_msg, /// sugg.to_string(), /// Applicability::MachineApplicable, /// ); /// span_lint_and_help(cx, TEST_LINT, expr.span, lint_msg, Some(expr.span), help_msg); /// span_lint_and_help(cx, TEST_LINT, expr.span, lint_msg, None, help_msg); /// span_lint_and_note(cx, TEST_LINT, expr.span, lint_msg, Some(expr.span), note_msg); /// span_lint_and_note(cx, TEST_LINT, expr.span, lint_msg, None, note_msg); /// ``` pub COLLAPSIBLE_SPAN_LINT_CALLS, internal, "found collapsible `span_lint_and_then` calls" } declare_clippy_lint! { /// **What it does:** Checks for calls to `utils::match_type()` on a type diagnostic item /// and suggests to use `utils::is_type_diagnostic_item()` instead. /// /// **Why is this bad?** `utils::is_type_diagnostic_item()` does not require hardcoded paths. /// /// **Known problems:** None. /// /// **Example:** /// Bad: /// ```rust,ignore /// utils::match_type(cx, ty, &paths::VEC) /// ``` /// /// Good: /// ```rust,ignore /// utils::is_type_diagnostic_item(cx, ty, sym::vec_type) /// ``` pub MATCH_TYPE_ON_DIAGNOSTIC_ITEM, internal, "using `utils::match_type()` instead of `utils::is_type_diagnostic_item()`" } declare_clippy_lint! { /// **What it does:** /// Checks the paths module for invalid paths. /// /// **Why is this bad?** /// It indicates a bug in the code. /// /// **Known problems:** None. /// /// **Example:** None. pub INVALID_PATHS, internal, "invalid path" } declare_clippy_lint! { /// **What it does:** /// Checks for interning symbols that have already been pre-interned and defined as constants. /// /// **Why is this bad?** /// It's faster and easier to use the symbol constant. /// /// **Known problems:** None. /// /// **Example:** /// Bad: /// ```rust,ignore /// let _ = sym!(f32); /// ``` /// /// Good: /// ```rust,ignore /// let _ = sym::f32; /// ``` pub INTERNING_DEFINED_SYMBOL, internal, "interning a symbol that is pre-interned and defined as a constant" } declare_clippy_lint! { /// **What it does:** Checks for unnecessary conversion from Symbol to a string. /// /// **Why is this bad?** It's faster use symbols directly intead of strings. /// /// **Known problems:** None. /// /// **Example:** /// Bad: /// ```rust,ignore /// symbol.as_str() == "clippy"; /// ``` /// /// Good: /// ```rust,ignore /// symbol == sym::clippy; /// ``` pub UNNECESSARY_SYMBOL_STR, internal, "unnecessary conversion between Symbol and string" } declare_lint_pass!(ClippyLintsInternal => [CLIPPY_LINTS_INTERNAL]); impl EarlyLintPass for ClippyLintsInternal { fn check_crate(&mut self, cx: &EarlyContext<'_>, krate: &AstCrate) { if let Some(utils) = krate.items.iter().find(|item| item.ident.name.as_str() == "utils") { if let ItemKind::Mod(_, ModKind::Loaded(ref items, ..)) = utils.kind { if let Some(paths) = items.iter().find(|item| item.ident.name.as_str() == "paths") { if let ItemKind::Mod(_, ModKind::Loaded(ref items, ..)) = paths.kind { let mut last_name: Option = None; for item in items { let name = item.ident.as_str(); if let Some(ref last_name) = last_name { if **last_name > *name { span_lint( cx, CLIPPY_LINTS_INTERNAL, item.span, "this constant should be before the previous constant due to lexical \ ordering", ); } } last_name = Some(name); } } } } } } } #[derive(Clone, Debug, Default)] pub struct LintWithoutLintPass { declared_lints: FxHashMap, registered_lints: FxHashSet, } impl_lint_pass!(LintWithoutLintPass => [DEFAULT_LINT, LINT_WITHOUT_LINT_PASS]); impl<'tcx> LateLintPass<'tcx> for LintWithoutLintPass { fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx Item<'_>) { if !run_lints(cx, &[DEFAULT_LINT], item.hir_id()) { return; } if let hir::ItemKind::Static(ref ty, Mutability::Not, body_id) = item.kind { if is_lint_ref_type(cx, ty) { let expr = &cx.tcx.hir().body(body_id).value; if_chain! { if let ExprKind::AddrOf(_, _, ref inner_exp) = expr.kind; if let ExprKind::Struct(_, ref fields, _) = inner_exp.kind; let field = fields .iter() .find(|f| f.ident.as_str() == "desc") .expect("lints must have a description field"); if let ExprKind::Lit(Spanned { node: LitKind::Str(ref sym, _), .. }) = field.expr.kind; if sym.as_str() == "default lint description"; then { span_lint( cx, DEFAULT_LINT, item.span, &format!("the lint `{}` has the default lint description", item.ident.name), ); } } self.declared_lints.insert(item.ident.name, item.span); } } else if is_expn_of(item.span, "impl_lint_pass").is_some() || is_expn_of(item.span, "declare_lint_pass").is_some() { if let hir::ItemKind::Impl(hir::Impl { of_trait: None, items: ref impl_item_refs, .. }) = item.kind { let mut collector = LintCollector { output: &mut self.registered_lints, cx, }; let body_id = cx.tcx.hir().body_owned_by( impl_item_refs .iter() .find(|iiref| iiref.ident.as_str() == "get_lints") .expect("LintPass needs to implement get_lints") .id .hir_id(), ); collector.visit_expr(&cx.tcx.hir().body(body_id).value); } } } fn check_crate_post(&mut self, cx: &LateContext<'tcx>, _: &'tcx Crate<'_>) { if !run_lints(cx, &[LINT_WITHOUT_LINT_PASS], CRATE_HIR_ID) { return; } for (lint_name, &lint_span) in &self.declared_lints { // When using the `declare_tool_lint!` macro, the original `lint_span`'s // file points to "". // `compiletest-rs` thinks that's an error in a different file and // just ignores it. This causes the test in compile-fail/lint_pass // not able to capture the error. // Therefore, we need to climb the macro expansion tree and find the // actual span that invoked `declare_tool_lint!`: let lint_span = lint_span.ctxt().outer_expn_data().call_site; if !self.registered_lints.contains(lint_name) { span_lint( cx, LINT_WITHOUT_LINT_PASS, lint_span, &format!("the lint `{}` is not added to any `LintPass`", lint_name), ); } } } } fn is_lint_ref_type<'tcx>(cx: &LateContext<'tcx>, ty: &Ty<'_>) -> bool { if let TyKind::Rptr( _, MutTy { ty: ref inner, mutbl: Mutability::Not, }, ) = ty.kind { if let TyKind::Path(ref path) = inner.kind { if let Res::Def(DefKind::Struct, def_id) = cx.qpath_res(path, inner.hir_id) { return match_def_path(cx, def_id, &paths::LINT); } } } false } struct LintCollector<'a, 'tcx> { output: &'a mut FxHashSet, cx: &'a LateContext<'tcx>, } impl<'a, 'tcx> Visitor<'tcx> for LintCollector<'a, 'tcx> { type Map = Map<'tcx>; fn visit_path(&mut self, path: &'tcx Path<'_>, _: HirId) { if path.segments.len() == 1 { self.output.insert(path.segments[0].ident.name); } } fn nested_visit_map(&mut self) -> NestedVisitorMap { NestedVisitorMap::All(self.cx.tcx.hir()) } } #[derive(Clone, Default)] pub struct CompilerLintFunctions { map: FxHashMap<&'static str, &'static str>, } impl CompilerLintFunctions { #[must_use] pub fn new() -> Self { let mut map = FxHashMap::default(); map.insert("span_lint", "utils::span_lint"); map.insert("struct_span_lint", "utils::span_lint"); map.insert("lint", "utils::span_lint"); map.insert("span_lint_note", "utils::span_lint_and_note"); map.insert("span_lint_help", "utils::span_lint_and_help"); Self { map } } } impl_lint_pass!(CompilerLintFunctions => [COMPILER_LINT_FUNCTIONS]); impl<'tcx> LateLintPass<'tcx> for CompilerLintFunctions { fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) { if !run_lints(cx, &[COMPILER_LINT_FUNCTIONS], expr.hir_id) { return; } if_chain! { if let ExprKind::MethodCall(ref path, _, ref args, _) = expr.kind; let fn_name = path.ident; if let Some(sugg) = self.map.get(&*fn_name.as_str()); let ty = cx.typeck_results().expr_ty(&args[0]).peel_refs(); if match_type(cx, ty, &paths::EARLY_CONTEXT) || match_type(cx, ty, &paths::LATE_CONTEXT); then { span_lint_and_help( cx, COMPILER_LINT_FUNCTIONS, path.ident.span, "usage of a compiler lint function", None, &format!("please use the Clippy variant of this function: `{}`", sugg), ); } } } } declare_lint_pass!(OuterExpnDataPass => [OUTER_EXPN_EXPN_DATA]); impl<'tcx> LateLintPass<'tcx> for OuterExpnDataPass { fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx hir::Expr<'_>) { if !run_lints(cx, &[OUTER_EXPN_EXPN_DATA], expr.hir_id) { return; } let (method_names, arg_lists, spans) = method_calls(expr, 2); let method_names: Vec = method_names.iter().map(|s| s.as_str()).collect(); let method_names: Vec<&str> = method_names.iter().map(|s| &**s).collect(); if_chain! { if let ["expn_data", "outer_expn"] = method_names.as_slice(); let args = arg_lists[1]; if args.len() == 1; let self_arg = &args[0]; let self_ty = cx.typeck_results().expr_ty(self_arg).peel_refs(); if match_type(cx, self_ty, &paths::SYNTAX_CONTEXT); then { span_lint_and_sugg( cx, OUTER_EXPN_EXPN_DATA, spans[1].with_hi(expr.span.hi()), "usage of `outer_expn().expn_data()`", "try", "outer_expn_data()".to_string(), Applicability::MachineApplicable, ); } } } } declare_lint_pass!(ProduceIce => [PRODUCE_ICE]); impl EarlyLintPass for ProduceIce { fn check_fn(&mut self, _: &EarlyContext<'_>, fn_kind: FnKind<'_>, _: Span, _: NodeId) { if is_trigger_fn(fn_kind) { panic!("Would you like some help with that?"); } } } fn is_trigger_fn(fn_kind: FnKind<'_>) -> bool { match fn_kind { FnKind::Fn(_, ident, ..) => ident.name.as_str() == "it_looks_like_you_are_trying_to_kill_clippy", FnKind::Closure(..) => false, } } declare_lint_pass!(CollapsibleCalls => [COLLAPSIBLE_SPAN_LINT_CALLS]); impl<'tcx> LateLintPass<'tcx> for CollapsibleCalls { fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx hir::Expr<'_>) { if !run_lints(cx, &[COLLAPSIBLE_SPAN_LINT_CALLS], expr.hir_id) { return; } if_chain! { if let ExprKind::Call(ref func, ref and_then_args) = expr.kind; if let ExprKind::Path(ref path) = func.kind; if match_qpath(path, &["span_lint_and_then"]); if and_then_args.len() == 5; if let ExprKind::Closure(_, _, body_id, _, _) = &and_then_args[4].kind; let body = cx.tcx.hir().body(*body_id); if let ExprKind::Block(block, _) = &body.value.kind; let stmts = &block.stmts; if stmts.len() == 1 && block.expr.is_none(); if let StmtKind::Semi(only_expr) = &stmts[0].kind; if let ExprKind::MethodCall(ref ps, _, ref span_call_args, _) = &only_expr.kind; let and_then_snippets = get_and_then_snippets(cx, and_then_args); let mut sle = SpanlessEq::new(cx).deny_side_effects(); then { match &*ps.ident.as_str() { "span_suggestion" if sle.eq_expr(&and_then_args[2], &span_call_args[1]) => { suggest_suggestion(cx, expr, &and_then_snippets, &span_suggestion_snippets(cx, span_call_args)); }, "span_help" if sle.eq_expr(&and_then_args[2], &span_call_args[1]) => { let help_snippet = snippet(cx, span_call_args[2].span, r#""...""#); suggest_help(cx, expr, &and_then_snippets, help_snippet.borrow(), true); }, "span_note" if sle.eq_expr(&and_then_args[2], &span_call_args[1]) => { let note_snippet = snippet(cx, span_call_args[2].span, r#""...""#); suggest_note(cx, expr, &and_then_snippets, note_snippet.borrow(), true); }, "help" => { let help_snippet = snippet(cx, span_call_args[1].span, r#""...""#); suggest_help(cx, expr, &and_then_snippets, help_snippet.borrow(), false); } "note" => { let note_snippet = snippet(cx, span_call_args[1].span, r#""...""#); suggest_note(cx, expr, &and_then_snippets, note_snippet.borrow(), false); } _ => (), } } } } } struct AndThenSnippets<'a> { cx: Cow<'a, str>, lint: Cow<'a, str>, span: Cow<'a, str>, msg: Cow<'a, str>, } fn get_and_then_snippets<'a, 'hir>(cx: &LateContext<'_>, and_then_snippets: &'hir [Expr<'hir>]) -> AndThenSnippets<'a> { let cx_snippet = snippet(cx, and_then_snippets[0].span, "cx"); let lint_snippet = snippet(cx, and_then_snippets[1].span, ".."); let span_snippet = snippet(cx, and_then_snippets[2].span, "span"); let msg_snippet = snippet(cx, and_then_snippets[3].span, r#""...""#); AndThenSnippets { cx: cx_snippet, lint: lint_snippet, span: span_snippet, msg: msg_snippet, } } struct SpanSuggestionSnippets<'a> { help: Cow<'a, str>, sugg: Cow<'a, str>, applicability: Cow<'a, str>, } fn span_suggestion_snippets<'a, 'hir>( cx: &LateContext<'_>, span_call_args: &'hir [Expr<'hir>], ) -> SpanSuggestionSnippets<'a> { let help_snippet = snippet(cx, span_call_args[2].span, r#""...""#); let sugg_snippet = snippet(cx, span_call_args[3].span, ".."); let applicability_snippet = snippet(cx, span_call_args[4].span, "Applicability::MachineApplicable"); SpanSuggestionSnippets { help: help_snippet, sugg: sugg_snippet, applicability: applicability_snippet, } } fn suggest_suggestion( cx: &LateContext<'_>, expr: &Expr<'_>, and_then_snippets: &AndThenSnippets<'_>, span_suggestion_snippets: &SpanSuggestionSnippets<'_>, ) { span_lint_and_sugg( cx, COLLAPSIBLE_SPAN_LINT_CALLS, expr.span, "this call is collapsible", "collapse into", format!( "span_lint_and_sugg({}, {}, {}, {}, {}, {}, {})", and_then_snippets.cx, and_then_snippets.lint, and_then_snippets.span, and_then_snippets.msg, span_suggestion_snippets.help, span_suggestion_snippets.sugg, span_suggestion_snippets.applicability ), Applicability::MachineApplicable, ); } fn suggest_help( cx: &LateContext<'_>, expr: &Expr<'_>, and_then_snippets: &AndThenSnippets<'_>, help: &str, with_span: bool, ) { let option_span = if with_span { format!("Some({})", and_then_snippets.span) } else { "None".to_string() }; span_lint_and_sugg( cx, COLLAPSIBLE_SPAN_LINT_CALLS, expr.span, "this call is collapsible", "collapse into", format!( "span_lint_and_help({}, {}, {}, {}, {}, {})", and_then_snippets.cx, and_then_snippets.lint, and_then_snippets.span, and_then_snippets.msg, &option_span, help ), Applicability::MachineApplicable, ); } fn suggest_note( cx: &LateContext<'_>, expr: &Expr<'_>, and_then_snippets: &AndThenSnippets<'_>, note: &str, with_span: bool, ) { let note_span = if with_span { format!("Some({})", and_then_snippets.span) } else { "None".to_string() }; span_lint_and_sugg( cx, COLLAPSIBLE_SPAN_LINT_CALLS, expr.span, "this call is collspible", "collapse into", format!( "span_lint_and_note({}, {}, {}, {}, {}, {})", and_then_snippets.cx, and_then_snippets.lint, and_then_snippets.span, and_then_snippets.msg, note_span, note ), Applicability::MachineApplicable, ); } declare_lint_pass!(MatchTypeOnDiagItem => [MATCH_TYPE_ON_DIAGNOSTIC_ITEM]); impl<'tcx> LateLintPass<'tcx> for MatchTypeOnDiagItem { fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx hir::Expr<'_>) { if !run_lints(cx, &[MATCH_TYPE_ON_DIAGNOSTIC_ITEM], expr.hir_id) { return; } if_chain! { // Check if this is a call to utils::match_type() if let ExprKind::Call(fn_path, [context, ty, ty_path]) = expr.kind; if let ExprKind::Path(fn_qpath) = &fn_path.kind; if match_qpath(&fn_qpath, &["utils", "match_type"]); // Extract the path to the matched type if let Some(segments) = path_to_matched_type(cx, ty_path); let segments: Vec<&str> = segments.iter().map(|sym| &**sym).collect(); if let Some(ty_did) = path_to_res(cx, &segments[..]).opt_def_id(); // Check if the matched type is a diagnostic item let diag_items = cx.tcx.diagnostic_items(ty_did.krate); if let Some(item_name) = diag_items.iter().find_map(|(k, v)| if *v == ty_did { Some(k) } else { None }); then { let cx_snippet = snippet(cx, context.span, "_"); let ty_snippet = snippet(cx, ty.span, "_"); span_lint_and_sugg( cx, MATCH_TYPE_ON_DIAGNOSTIC_ITEM, expr.span, "usage of `utils::match_type()` on a type diagnostic item", "try", format!("utils::is_type_diagnostic_item({}, {}, sym::{})", cx_snippet, ty_snippet, item_name), Applicability::MaybeIncorrect, ); } } } } fn path_to_matched_type(cx: &LateContext<'_>, expr: &hir::Expr<'_>) -> Option> { use rustc_hir::ItemKind; match &expr.kind { ExprKind::AddrOf(.., expr) => return path_to_matched_type(cx, expr), ExprKind::Path(qpath) => match cx.qpath_res(qpath, expr.hir_id) { Res::Local(hir_id) => { let parent_id = cx.tcx.hir().get_parent_node(hir_id); if let Some(Node::Local(local)) = cx.tcx.hir().find(parent_id) { if let Some(init) = local.init { return path_to_matched_type(cx, init); } } }, Res::Def(DefKind::Const | DefKind::Static, def_id) => { if let Some(Node::Item(item)) = cx.tcx.hir().get_if_local(def_id) { if let ItemKind::Const(.., body_id) | ItemKind::Static(.., body_id) = item.kind { let body = cx.tcx.hir().body(body_id); return path_to_matched_type(cx, &body.value); } } }, _ => {}, }, ExprKind::Array(exprs) => { let segments: Vec = exprs .iter() .filter_map(|expr| { if let ExprKind::Lit(lit) = &expr.kind { if let LitKind::Str(sym, _) = lit.node { return Some(sym.as_str()); } } None }) .collect(); if segments.len() == exprs.len() { return Some(segments); } }, _ => {}, } None } // This is not a complete resolver for paths. It works on all the paths currently used in the paths // module. That's all it does and all it needs to do. pub fn check_path(cx: &LateContext<'_>, path: &[&str]) -> bool { if path_to_res(cx, path) != Res::Err { return true; } // Some implementations can't be found by `path_to_res`, particularly inherent // implementations of native types. Check lang items. let path_syms: Vec<_> = path.iter().map(|p| Symbol::intern(p)).collect(); let lang_items = cx.tcx.lang_items(); for item_def_id in lang_items.items().iter().flatten() { let lang_item_path = cx.get_def_path(*item_def_id); if path_syms.starts_with(&lang_item_path) { if let [item] = &path_syms[lang_item_path.len()..] { for child in cx.tcx.item_children(*item_def_id) { if child.ident.name == *item { return true; } } } } } false } declare_lint_pass!(InvalidPaths => [INVALID_PATHS]); impl<'tcx> LateLintPass<'tcx> for InvalidPaths { fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx Item<'_>) { let local_def_id = &cx.tcx.parent_module(item.hir_id()); let mod_name = &cx.tcx.item_name(local_def_id.to_def_id()); if_chain! { if mod_name.as_str() == "paths"; if let hir::ItemKind::Const(ty, body_id) = item.kind; let ty = hir_ty_to_ty(cx.tcx, ty); if let ty::Array(el_ty, _) = &ty.kind(); if let ty::Ref(_, el_ty, _) = &el_ty.kind(); if el_ty.is_str(); let body = cx.tcx.hir().body(body_id); let typeck_results = cx.tcx.typeck_body(body_id); if let Some(Constant::Vec(path)) = constant_simple(cx, typeck_results, &body.value); let path: Vec<&str> = path.iter().map(|x| { if let Constant::Str(s) = x { s.as_str() } else { // We checked the type of the constant above unreachable!() } }).collect(); if !check_path(cx, &path[..]); then { span_lint(cx, CLIPPY_LINTS_INTERNAL, item.span, "invalid path"); } } } } #[derive(Default)] pub struct InterningDefinedSymbol { // Maps the symbol value to the constant DefId. symbol_map: FxHashMap, } impl_lint_pass!(InterningDefinedSymbol => [INTERNING_DEFINED_SYMBOL, UNNECESSARY_SYMBOL_STR]); impl<'tcx> LateLintPass<'tcx> for InterningDefinedSymbol { fn check_crate(&mut self, cx: &LateContext<'_>, _: &Crate<'_>) { if !self.symbol_map.is_empty() { return; } for &module in &[&paths::KW_MODULE, &paths::SYM_MODULE] { if let Some(def_id) = path_to_res(cx, module).opt_def_id() { for item in cx.tcx.item_children(def_id).iter() { if_chain! { if let Res::Def(DefKind::Const, item_def_id) = item.res; let ty = cx.tcx.type_of(item_def_id); if match_type(cx, ty, &paths::SYMBOL); if let Ok(ConstValue::Scalar(value)) = cx.tcx.const_eval_poly(item_def_id); if let Ok(value) = value.to_u32(); then { self.symbol_map.insert(value, item_def_id); } } } } } } fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) { if_chain! { if let ExprKind::Call(func, [arg]) = &expr.kind; if let ty::FnDef(def_id, _) = cx.typeck_results().expr_ty(func).kind(); if match_def_path(cx, *def_id, &paths::SYMBOL_INTERN); if let Some(Constant::Str(arg)) = constant_simple(cx, cx.typeck_results(), arg); let value = Symbol::intern(&arg).as_u32(); if let Some(&def_id) = self.symbol_map.get(&value); then { span_lint_and_sugg( cx, INTERNING_DEFINED_SYMBOL, is_expn_of(expr.span, "sym").unwrap_or(expr.span), "interning a defined symbol", "try", cx.tcx.def_path_str(def_id), Applicability::MachineApplicable, ); } } if let ExprKind::Binary(op, left, right) = expr.kind { if matches!(op.node, BinOpKind::Eq | BinOpKind::Ne) { let data = [ (left, self.symbol_str_expr(left, cx)), (right, self.symbol_str_expr(right, cx)), ]; match data { // both operands are a symbol string [(_, Some(left)), (_, Some(right))] => { span_lint_and_sugg( cx, UNNECESSARY_SYMBOL_STR, expr.span, "unnecessary `Symbol` to string conversion", "try", format!( "{} {} {}", left.as_symbol_snippet(cx), op.node.as_str(), right.as_symbol_snippet(cx), ), Applicability::MachineApplicable, ); }, // one of the operands is a symbol string [(expr, Some(symbol)), _] | [_, (expr, Some(symbol))] => { // creating an owned string for comparison if matches!(symbol, SymbolStrExpr::Expr { is_to_owned: true, .. }) { span_lint_and_sugg( cx, UNNECESSARY_SYMBOL_STR, expr.span, "unnecessary string allocation", "try", format!("{}.as_str()", symbol.as_symbol_snippet(cx)), Applicability::MachineApplicable, ); } }, // nothing found [(_, None), (_, None)] => {}, } } } } } impl InterningDefinedSymbol { fn symbol_str_expr<'tcx>(&self, expr: &'tcx Expr<'tcx>, cx: &LateContext<'tcx>) -> Option> { static IDENT_STR_PATHS: &[&[&str]] = &[&paths::IDENT_AS_STR, &paths::TO_STRING_METHOD]; static SYMBOL_STR_PATHS: &[&[&str]] = &[ &paths::SYMBOL_AS_STR, &paths::SYMBOL_TO_IDENT_STRING, &paths::TO_STRING_METHOD, ]; // SymbolStr might be de-referenced: `&*symbol.as_str()` let call = if_chain! { if let ExprKind::AddrOf(_, _, e) = expr.kind; if let ExprKind::Unary(UnOp::Deref, e) = e.kind; then { e } else { expr } }; if_chain! { // is a method call if let ExprKind::MethodCall(_, _, [item], _) = call.kind; if let Some(did) = cx.typeck_results().type_dependent_def_id(call.hir_id); let ty = cx.typeck_results().expr_ty(item); // ...on either an Ident or a Symbol if let Some(is_ident) = if match_type(cx, ty, &paths::SYMBOL) { Some(false) } else if match_type(cx, ty, &paths::IDENT) { Some(true) } else { None }; // ...which converts it to a string let paths = if is_ident { IDENT_STR_PATHS } else { SYMBOL_STR_PATHS }; if let Some(path) = paths.iter().find(|path| match_def_path(cx, did, path)); then { let is_to_owned = path.last().unwrap().ends_with("string"); return Some(SymbolStrExpr::Expr { item, is_ident, is_to_owned, }); } } // is a string constant if let Some(Constant::Str(s)) = constant_simple(cx, cx.typeck_results(), expr) { let value = Symbol::intern(&s).as_u32(); // ...which matches a symbol constant if let Some(&def_id) = self.symbol_map.get(&value) { return Some(SymbolStrExpr::Const(def_id)); } } None } } enum SymbolStrExpr<'tcx> { /// a string constant with a corresponding symbol constant Const(DefId), /// a "symbol to string" expression like `symbol.as_str()` Expr { /// part that evaluates to `Symbol` or `Ident` item: &'tcx Expr<'tcx>, is_ident: bool, /// whether an owned `String` is created like `to_ident_string()` is_to_owned: bool, }, } impl<'tcx> SymbolStrExpr<'tcx> { /// Returns a snippet that evaluates to a `Symbol` and is const if possible fn as_symbol_snippet(&self, cx: &LateContext<'_>) -> Cow<'tcx, str> { match *self { Self::Const(def_id) => cx.tcx.def_path_str(def_id).into(), Self::Expr { item, is_ident, .. } => { let mut snip = snippet(cx, item.span.source_callsite(), ".."); if is_ident { // get `Ident.name` snip.to_mut().push_str(".name"); } snip }, } } }