use if_chain::if_chain; use rustc_errors::Applicability; use rustc_hir::def::{DefKind, Res}; use rustc_hir::{def, BindingAnnotation, Block, Expr, ExprKind, MatchSource, PatKind, StmtKind}; use rustc_lint::{LateContext, LateLintPass}; use rustc_session::{declare_lint_pass, declare_tool_lint}; use crate::utils::paths::{OPTION, OPTION_NONE}; use crate::utils::sugg::Sugg; use crate::utils::{ higher, match_def_path, match_qpath, match_type, snippet_with_applicability, span_lint_and_then, SpanlessEq, }; declare_clippy_lint! { /// **What it does:** Checks for expressions that could be replaced by the question mark operator. /// /// **Why is this bad?** Question mark usage is more idiomatic. /// /// **Known problems:** None /// /// **Example:** /// ```ignore /// if option.is_none() { /// return None; /// } /// ``` /// /// Could be written: /// /// ```ignore /// option?; /// ``` pub QUESTION_MARK, style, "checks for expressions that could be replaced by the question mark operator" } declare_lint_pass!(QuestionMark => [QUESTION_MARK]); impl QuestionMark { /// Checks if the given expression on the given context matches the following structure: /// /// ```ignore /// if option.is_none() { /// return None; /// } /// ``` /// /// If it matches, it will suggest to use the question mark operator instead fn check_is_none_and_early_return_none(cx: &LateContext<'_, '_>, expr: &Expr<'_>) { if_chain! { if let Some((if_expr, body, else_)) = higher::if_block(&expr); if let ExprKind::MethodCall(segment, _, args) = &if_expr.kind; if segment.ident.name == sym!(is_none); if Self::expression_returns_none(cx, body); if let Some(subject) = args.get(0); if Self::is_option(cx, subject); then { let receiver_str = &Sugg::hir(cx, subject, ".."); let mut replacement: Option = None; if let Some(else_) = else_ { if_chain! { if let ExprKind::Block(block, None) = &else_.kind; if block.stmts.is_empty(); if let Some(block_expr) = &block.expr; if SpanlessEq::new(cx).ignore_fn().eq_expr(subject, block_expr); then { replacement = Some(format!("Some({}?)", receiver_str)); } } } else if Self::moves_by_default(cx, subject) { replacement = Some(format!("{}.as_ref()?;", receiver_str)); } else { replacement = Some(format!("{}?;", receiver_str)); } if let Some(replacement_str) = replacement { span_lint_and_then( cx, QUESTION_MARK, expr.span, "this block may be rewritten with the `?` operator", |db| { db.span_suggestion( expr.span, "replace it with", replacement_str, Applicability::MaybeIncorrect, // snippet ); } ) } } } } fn check_if_let_some_and_early_return_none(cx: &LateContext<'_, '_>, expr: &Expr<'_>) { if_chain! { if let ExprKind::Match(subject, arms, source) = &expr.kind; if *source == MatchSource::IfLetDesugar { contains_else_clause: true }; if Self::is_option(cx, subject); if let PatKind::TupleStruct(path1, fields, None) = &arms[0].pat.kind; if match_qpath(path1, &["Some"]); if let PatKind::Binding(annot, _, bind, _) = &fields[0].kind; let by_ref = matches!(annot, BindingAnnotation::Ref | BindingAnnotation::RefMut); if let ExprKind::Block(block, None) = &arms[0].body.kind; if block.stmts.is_empty(); if let Some(trailing_expr) = &block.expr; if let ExprKind::Path(path) = &trailing_expr.kind; if match_qpath(path, &[&bind.as_str()]); if let PatKind::Wild = arms[1].pat.kind; if Self::expression_returns_none(cx, arms[1].body); then { let mut applicability = Applicability::MachineApplicable; let receiver_str = snippet_with_applicability(cx, subject.span, "..", &mut applicability); let replacement = format!( "{}{}?", receiver_str, if by_ref { ".as_ref()" } else { "" }, ); span_lint_and_then( cx, QUESTION_MARK, expr.span, "this if-let-else may be rewritten with the `?` operator", |db| { db.span_suggestion( expr.span, "replace it with", replacement, applicability, ); } ) } } } fn moves_by_default(cx: &LateContext<'_, '_>, expression: &Expr<'_>) -> bool { let expr_ty = cx.tables.expr_ty(expression); !expr_ty.is_copy_modulo_regions(cx.tcx, cx.param_env, expression.span) } fn is_option(cx: &LateContext<'_, '_>, expression: &Expr<'_>) -> bool { let expr_ty = cx.tables.expr_ty(expression); match_type(cx, expr_ty, &OPTION) } fn expression_returns_none(cx: &LateContext<'_, '_>, expression: &Expr<'_>) -> bool { match expression.kind { ExprKind::Block(ref block, _) => { if let Some(return_expression) = Self::return_expression(block) { return Self::expression_returns_none(cx, &return_expression); } false }, ExprKind::Ret(Some(ref expr)) => Self::expression_returns_none(cx, expr), ExprKind::Path(ref qp) => { if let Res::Def(DefKind::Ctor(def::CtorOf::Variant, def::CtorKind::Const), def_id) = cx.tables.qpath_res(qp, expression.hir_id) { return match_def_path(cx, def_id, &OPTION_NONE); } false }, _ => false, } } fn return_expression<'tcx>(block: &Block<'tcx>) -> Option<&'tcx Expr<'tcx>> { // Check if last expression is a return statement. Then, return the expression if_chain! { if block.stmts.len() == 1; if let Some(expr) = block.stmts.iter().last(); if let StmtKind::Semi(ref expr) = expr.kind; if let ExprKind::Ret(ret_expr) = expr.kind; if let Some(ret_expr) = ret_expr; then { return Some(ret_expr); } } // Check for `return` without a semicolon. if_chain! { if block.stmts.is_empty(); if let Some(ExprKind::Ret(Some(ret_expr))) = block.expr.as_ref().map(|e| &e.kind); then { return Some(ret_expr); } } None } } impl<'a, 'tcx> LateLintPass<'a, 'tcx> for QuestionMark { fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, expr: &'tcx Expr<'_>) { Self::check_is_none_and_early_return_none(cx, expr); Self::check_if_let_some_and_early_return_none(cx, expr); } }