use crate::consts::{constant, Constant}; use if_chain::if_chain; use rustc_ast::ast::RangeLimits; use rustc_errors::Applicability; use rustc_hir::{BinOpKind, Expr, ExprKind, PathSegment, QPath}; use rustc_lint::{LateContext, LateLintPass, LintContext}; use rustc_middle::ty; use rustc_semver::RustcVersion; use rustc_session::{declare_tool_lint, impl_lint_pass}; use rustc_span::source_map::{Span, Spanned}; use rustc_span::sym; use rustc_span::symbol::Ident; use std::cmp::Ordering; use crate::utils::sugg::Sugg; use crate::utils::{ get_parent_expr, in_constant, is_integer_const, meets_msrv, single_segment_path, snippet, snippet_opt, snippet_with_applicability, span_lint, span_lint_and_sugg, span_lint_and_then, }; use crate::utils::{higher, SpanlessEq}; declare_clippy_lint! { /// **What it does:** Checks for zipping a collection with the range of /// `0.._.len()`. /// /// **Why is this bad?** The code is better expressed with `.enumerate()`. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// # let x = vec![1]; /// x.iter().zip(0..x.len()); /// ``` /// Could be written as /// ```rust /// # let x = vec![1]; /// x.iter().enumerate(); /// ``` pub RANGE_ZIP_WITH_LEN, complexity, "zipping iterator with a range when `enumerate()` would do" } declare_clippy_lint! { /// **What it does:** Checks for exclusive ranges where 1 is added to the /// upper bound, e.g., `x..(y+1)`. /// /// **Why is this bad?** The code is more readable with an inclusive range /// like `x..=y`. /// /// **Known problems:** Will add unnecessary pair of parentheses when the /// expression is not wrapped in a pair but starts with a opening parenthesis /// and ends with a closing one. /// I.e., `let _ = (f()+1)..(f()+1)` results in `let _ = ((f()+1)..=f())`. /// /// Also in many cases, inclusive ranges are still slower to run than /// exclusive ranges, because they essentially add an extra branch that /// LLVM may fail to hoist out of the loop. /// /// This will cause a warning that cannot be fixed if the consumer of the /// range only accepts a specific range type, instead of the generic /// `RangeBounds` trait /// ([#3307](https://github.com/rust-lang/rust-clippy/issues/3307)). /// /// **Example:** /// ```rust,ignore /// for x..(y+1) { .. } /// ``` /// Could be written as /// ```rust,ignore /// for x..=y { .. } /// ``` pub RANGE_PLUS_ONE, pedantic, "`x..(y+1)` reads better as `x..=y`" } declare_clippy_lint! { /// **What it does:** Checks for inclusive ranges where 1 is subtracted from /// the upper bound, e.g., `x..=(y-1)`. /// /// **Why is this bad?** The code is more readable with an exclusive range /// like `x..y`. /// /// **Known problems:** This will cause a warning that cannot be fixed if /// the consumer of the range only accepts a specific range type, instead of /// the generic `RangeBounds` trait /// ([#3307](https://github.com/rust-lang/rust-clippy/issues/3307)). /// /// **Example:** /// ```rust,ignore /// for x..=(y-1) { .. } /// ``` /// Could be written as /// ```rust,ignore /// for x..y { .. } /// ``` pub RANGE_MINUS_ONE, pedantic, "`x..=(y-1)` reads better as `x..y`" } declare_clippy_lint! { /// **What it does:** Checks for range expressions `x..y` where both `x` and `y` /// are constant and `x` is greater or equal to `y`. /// /// **Why is this bad?** Empty ranges yield no values so iterating them is a no-op. /// Moreover, trying to use a reversed range to index a slice will panic at run-time. /// /// **Known problems:** None. /// /// **Example:** /// /// ```rust,no_run /// fn main() { /// (10..=0).for_each(|x| println!("{}", x)); /// /// let arr = [1, 2, 3, 4, 5]; /// let sub = &arr[3..1]; /// } /// ``` /// Use instead: /// ```rust /// fn main() { /// (0..=10).rev().for_each(|x| println!("{}", x)); /// /// let arr = [1, 2, 3, 4, 5]; /// let sub = &arr[1..3]; /// } /// ``` pub REVERSED_EMPTY_RANGES, correctness, "reversing the limits of range expressions, resulting in empty ranges" } declare_clippy_lint! { /// **What it does:** Checks for expressions like `x >= 3 && x < 8` that could /// be more readably expressed as `(3..8).contains(x)`. /// /// **Why is this bad?** `contains` expresses the intent better and has less /// failure modes (such as fencepost errors or using `||` instead of `&&`). /// /// **Known problems:** None. /// /// **Example:** /// /// ```rust /// // given /// let x = 6; /// /// assert!(x >= 3 && x < 8); /// ``` /// Use instead: /// ```rust ///# let x = 6; /// assert!((3..8).contains(&x)); /// ``` pub MANUAL_RANGE_CONTAINS, style, "manually reimplementing {`Range`, `RangeInclusive`}`::contains`" } const MANUAL_RANGE_CONTAINS_MSRV: RustcVersion = RustcVersion::new(1, 35, 0); pub struct Ranges { msrv: Option, } impl Ranges { #[must_use] pub fn new(msrv: Option) -> Self { Self { msrv } } } impl_lint_pass!(Ranges => [ RANGE_ZIP_WITH_LEN, RANGE_PLUS_ONE, RANGE_MINUS_ONE, REVERSED_EMPTY_RANGES, MANUAL_RANGE_CONTAINS, ]); impl<'tcx> LateLintPass<'tcx> for Ranges { fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) { match expr.kind { ExprKind::MethodCall(ref path, _, ref args, _) => { check_range_zip_with_len(cx, path, args, expr.span); }, ExprKind::Binary(ref op, ref l, ref r) => { if meets_msrv(self.msrv.as_ref(), &MANUAL_RANGE_CONTAINS_MSRV) { check_possible_range_contains(cx, op.node, l, r, expr); } }, _ => {}, } check_exclusive_range_plus_one(cx, expr); check_inclusive_range_minus_one(cx, expr); check_reversed_empty_range(cx, expr); } extract_msrv_attr!(LateContext); } fn check_possible_range_contains(cx: &LateContext<'_>, op: BinOpKind, l: &Expr<'_>, r: &Expr<'_>, expr: &Expr<'_>) { if in_constant(cx, expr.hir_id) { return; } let span = expr.span; let combine_and = match op { BinOpKind::And | BinOpKind::BitAnd => true, BinOpKind::Or | BinOpKind::BitOr => false, _ => return, }; // value, name, order (higher/lower), inclusiveness if let (Some((lval, lname, name_span, lval_span, lord, linc)), Some((rval, rname, _, rval_span, rord, rinc))) = (check_range_bounds(cx, l), check_range_bounds(cx, r)) { // we only lint comparisons on the same name and with different // direction if lname != rname || lord == rord { return; } let ord = Constant::partial_cmp(cx.tcx, cx.typeck_results().expr_ty(l), &lval, &rval); if combine_and && ord == Some(rord) { // order lower bound and upper bound let (l_span, u_span, l_inc, u_inc) = if rord == Ordering::Less { (lval_span, rval_span, linc, rinc) } else { (rval_span, lval_span, rinc, linc) }; // we only lint inclusive lower bounds if !l_inc { return; } let (range_type, range_op) = if u_inc { ("RangeInclusive", "..=") } else { ("Range", "..") }; let mut applicability = Applicability::MachineApplicable; let name = snippet_with_applicability(cx, name_span, "_", &mut applicability); let lo = snippet_with_applicability(cx, l_span, "_", &mut applicability); let hi = snippet_with_applicability(cx, u_span, "_", &mut applicability); let space = if lo.ends_with('.') { " " } else { "" }; span_lint_and_sugg( cx, MANUAL_RANGE_CONTAINS, span, &format!("manual `{}::contains` implementation", range_type), "use", format!("({}{}{}{}).contains(&{})", lo, space, range_op, hi, name), applicability, ); } else if !combine_and && ord == Some(lord) { // `!_.contains(_)` // order lower bound and upper bound let (l_span, u_span, l_inc, u_inc) = if lord == Ordering::Less { (lval_span, rval_span, linc, rinc) } else { (rval_span, lval_span, rinc, linc) }; if l_inc { return; } let (range_type, range_op) = if u_inc { ("Range", "..") } else { ("RangeInclusive", "..=") }; let mut applicability = Applicability::MachineApplicable; let name = snippet_with_applicability(cx, name_span, "_", &mut applicability); let lo = snippet_with_applicability(cx, l_span, "_", &mut applicability); let hi = snippet_with_applicability(cx, u_span, "_", &mut applicability); let space = if lo.ends_with('.') { " " } else { "" }; span_lint_and_sugg( cx, MANUAL_RANGE_CONTAINS, span, &format!("manual `!{}::contains` implementation", range_type), "use", format!("!({}{}{}{}).contains(&{})", lo, space, range_op, hi, name), applicability, ); } } } fn check_range_bounds(cx: &LateContext<'_>, ex: &Expr<'_>) -> Option<(Constant, Ident, Span, Span, Ordering, bool)> { if let ExprKind::Binary(ref op, ref l, ref r) = ex.kind { let (inclusive, ordering) = match op.node { BinOpKind::Gt => (false, Ordering::Greater), BinOpKind::Ge => (true, Ordering::Greater), BinOpKind::Lt => (false, Ordering::Less), BinOpKind::Le => (true, Ordering::Less), _ => return None, }; if let Some(id) = match_ident(l) { if let Some((c, _)) = constant(cx, cx.typeck_results(), r) { return Some((c, id, l.span, r.span, ordering, inclusive)); } } else if let Some(id) = match_ident(r) { if let Some((c, _)) = constant(cx, cx.typeck_results(), l) { return Some((c, id, r.span, l.span, ordering.reverse(), inclusive)); } } } None } fn match_ident(e: &Expr<'_>) -> Option { if let ExprKind::Path(ref qpath) = e.kind { if let Some(seg) = single_segment_path(qpath) { if seg.args.is_none() { return Some(seg.ident); } } } None } fn check_range_zip_with_len(cx: &LateContext<'_>, path: &PathSegment<'_>, args: &[Expr<'_>], span: Span) { let name = path.ident.as_str(); if name == "zip" && args.len() == 2 { let iter = &args[0].kind; let zip_arg = &args[1]; if_chain! { // `.iter()` call if let ExprKind::MethodCall(ref iter_path, _, ref iter_args, _) = *iter; if iter_path.ident.name == sym::iter; // range expression in `.zip()` call: `0..x.len()` if let Some(higher::Range { start: Some(start), end: Some(end), .. }) = higher::range(zip_arg); if is_integer_const(cx, start, 0); // `.len()` call if let ExprKind::MethodCall(ref len_path, _, ref len_args, _) = end.kind; if len_path.ident.name == sym!(len) && len_args.len() == 1; // `.iter()` and `.len()` called on same `Path` if let ExprKind::Path(QPath::Resolved(_, ref iter_path)) = iter_args[0].kind; if let ExprKind::Path(QPath::Resolved(_, ref len_path)) = len_args[0].kind; if SpanlessEq::new(cx).eq_path_segments(&iter_path.segments, &len_path.segments); then { span_lint(cx, RANGE_ZIP_WITH_LEN, span, &format!("it is more idiomatic to use `{}.iter().enumerate()`", snippet(cx, iter_args[0].span, "_")) ); } } } } // exclusive range plus one: `x..(y+1)` fn check_exclusive_range_plus_one(cx: &LateContext<'_>, expr: &Expr<'_>) { if_chain! { if let Some(higher::Range { start, end: Some(end), limits: RangeLimits::HalfOpen }) = higher::range(expr); if let Some(y) = y_plus_one(cx, end); then { let span = if expr.span.from_expansion() { expr.span .ctxt() .outer_expn_data() .call_site } else { expr.span }; span_lint_and_then( cx, RANGE_PLUS_ONE, span, "an inclusive range would be more readable", |diag| { let start = start.map_or(String::new(), |x| Sugg::hir(cx, x, "x").to_string()); let end = Sugg::hir(cx, y, "y"); if let Some(is_wrapped) = &snippet_opt(cx, span) { if is_wrapped.starts_with('(') && is_wrapped.ends_with(')') { diag.span_suggestion( span, "use", format!("({}..={})", start, end), Applicability::MaybeIncorrect, ); } else { diag.span_suggestion( span, "use", format!("{}..={}", start, end), Applicability::MachineApplicable, // snippet ); } } }, ); } } } // inclusive range minus one: `x..=(y-1)` fn check_inclusive_range_minus_one(cx: &LateContext<'_>, expr: &Expr<'_>) { if_chain! { if let Some(higher::Range { start, end: Some(end), limits: RangeLimits::Closed }) = higher::range(expr); if let Some(y) = y_minus_one(cx, end); then { span_lint_and_then( cx, RANGE_MINUS_ONE, expr.span, "an exclusive range would be more readable", |diag| { let start = start.map_or(String::new(), |x| Sugg::hir(cx, x, "x").to_string()); let end = Sugg::hir(cx, y, "y"); diag.span_suggestion( expr.span, "use", format!("{}..{}", start, end), Applicability::MachineApplicable, // snippet ); }, ); } } } fn check_reversed_empty_range(cx: &LateContext<'_>, expr: &Expr<'_>) { fn inside_indexing_expr(cx: &LateContext<'_>, expr: &Expr<'_>) -> bool { matches!( get_parent_expr(cx, expr), Some(Expr { kind: ExprKind::Index(..), .. }) ) } fn is_for_loop_arg(cx: &LateContext<'_>, expr: &Expr<'_>) -> bool { let mut cur_expr = expr; while let Some(parent_expr) = get_parent_expr(cx, cur_expr) { match higher::for_loop(parent_expr) { Some((_, args, _)) if args.hir_id == expr.hir_id => return true, _ => cur_expr = parent_expr, } } false } fn is_empty_range(limits: RangeLimits, ordering: Ordering) -> bool { match limits { RangeLimits::HalfOpen => ordering != Ordering::Less, RangeLimits::Closed => ordering == Ordering::Greater, } } if_chain! { if let Some(higher::Range { start: Some(start), end: Some(end), limits }) = higher::range(expr); let ty = cx.typeck_results().expr_ty(start); if let ty::Int(_) | ty::Uint(_) = ty.kind(); if let Some((start_idx, _)) = constant(cx, cx.typeck_results(), start); if let Some((end_idx, _)) = constant(cx, cx.typeck_results(), end); if let Some(ordering) = Constant::partial_cmp(cx.tcx, ty, &start_idx, &end_idx); if is_empty_range(limits, ordering); then { if inside_indexing_expr(cx, expr) { // Avoid linting `N..N` as it has proven to be useful, see #5689 and #5628 ... if ordering != Ordering::Equal { span_lint( cx, REVERSED_EMPTY_RANGES, expr.span, "this range is reversed and using it to index a slice will panic at run-time", ); } // ... except in for loop arguments for backwards compatibility with `reverse_range_loop` } else if ordering != Ordering::Equal || is_for_loop_arg(cx, expr) { span_lint_and_then( cx, REVERSED_EMPTY_RANGES, expr.span, "this range is empty so it will yield no values", |diag| { if ordering != Ordering::Equal { let start_snippet = snippet(cx, start.span, "_"); let end_snippet = snippet(cx, end.span, "_"); let dots = match limits { RangeLimits::HalfOpen => "..", RangeLimits::Closed => "..=" }; diag.span_suggestion( expr.span, "consider using the following if you are attempting to iterate over this \ range in reverse", format!("({}{}{}).rev()", end_snippet, dots, start_snippet), Applicability::MaybeIncorrect, ); } }, ); } } } } fn y_plus_one<'t>(cx: &LateContext<'_>, expr: &'t Expr<'_>) -> Option<&'t Expr<'t>> { match expr.kind { ExprKind::Binary( Spanned { node: BinOpKind::Add, .. }, ref lhs, ref rhs, ) => { if is_integer_const(cx, lhs, 1) { Some(rhs) } else if is_integer_const(cx, rhs, 1) { Some(lhs) } else { None } }, _ => None, } } fn y_minus_one<'t>(cx: &LateContext<'_>, expr: &'t Expr<'_>) -> Option<&'t Expr<'t>> { match expr.kind { ExprKind::Binary( Spanned { node: BinOpKind::Sub, .. }, ref lhs, ref rhs, ) if is_integer_const(cx, rhs, 1) => Some(lhs), _ => None, } }