mod bind_instead_of_map; mod bytes_nth; mod chars_cmp; mod chars_cmp_with_unwrap; mod chars_last_cmp; mod chars_last_cmp_with_unwrap; mod chars_next_cmp; mod chars_next_cmp_with_unwrap; mod clone_on_copy; mod clone_on_ref_ptr; mod expect_fun_call; mod expect_used; mod filetype_is_file; mod filter_flat_map; mod filter_map; mod filter_map_flat_map; mod filter_map_identity; mod filter_map_map; mod filter_map_next; mod filter_next; mod flat_map_identity; mod from_iter_instead_of_collect; mod get_unwrap; mod implicit_clone; mod inefficient_to_string; mod inspect_for_each; mod into_iter_on_ref; mod iter_cloned_collect; mod iter_count; mod iter_next_slice; mod iter_nth; mod iter_nth_zero; mod iter_skip_next; mod iterator_step_by_zero; mod manual_saturating_arithmetic; mod map_collect_result_unit; mod map_flatten; mod map_unwrap_or; mod ok_expect; mod option_as_ref_deref; mod option_map_or_none; mod option_map_unwrap_or; mod or_fun_call; mod search_is_some; mod single_char_add_str; mod single_char_insert_string; mod single_char_pattern; mod single_char_push_string; mod skip_while_next; mod string_extend_chars; mod suspicious_map; mod uninit_assumed_init; mod unnecessary_filter_map; mod unnecessary_fold; mod unnecessary_lazy_eval; mod unwrap_used; mod useless_asref; mod utils; mod wrong_self_convention; mod zst_offset; use bind_instead_of_map::BindInsteadOfMap; use clippy_utils::diagnostics::{span_lint, span_lint_and_help}; use clippy_utils::ty::{contains_adt_constructor, contains_ty, implements_trait, is_copy, is_type_diagnostic_item}; use clippy_utils::{contains_return, get_trait_def_id, in_macro, iter_input_pats, paths, return_ty}; use if_chain::if_chain; use rustc_hir as hir; use rustc_hir::def::Res; use rustc_hir::{Expr, ExprKind, PrimTy, QPath, TraitItem, TraitItemKind}; use rustc_lint::{LateContext, LateLintPass, LintContext}; use rustc_middle::lint::in_external_macro; use rustc_middle::ty::{self, TraitRef, Ty, TyS}; use rustc_semver::RustcVersion; use rustc_session::{declare_tool_lint, impl_lint_pass}; use rustc_span::symbol::SymbolStr; use rustc_span::{sym, Span}; use rustc_typeck::hir_ty_to_ty; declare_clippy_lint! { /// **What it does:** Checks for `.unwrap()` calls on `Option`s and on `Result`s. /// /// **Why is this bad?** It is better to handle the `None` or `Err` case, /// or at least call `.expect(_)` with a more helpful message. Still, for a lot of /// quick-and-dirty code, `unwrap` is a good choice, which is why this lint is /// `Allow` by default. /// /// `result.unwrap()` will let the thread panic on `Err` values. /// Normally, you want to implement more sophisticated error handling, /// and propagate errors upwards with `?` operator. /// /// Even if you want to panic on errors, not all `Error`s implement good /// messages on display. Therefore, it may be beneficial to look at the places /// where they may get displayed. Activate this lint to do just that. /// /// **Known problems:** None. /// /// **Examples:** /// ```rust /// # let opt = Some(1); /// /// // Bad /// opt.unwrap(); /// /// // Good /// opt.expect("more helpful message"); /// ``` /// /// // or /// /// ```rust /// # let res: Result = Ok(1); /// /// // Bad /// res.unwrap(); /// /// // Good /// res.expect("more helpful message"); /// ``` pub UNWRAP_USED, restriction, "using `.unwrap()` on `Result` or `Option`, which should at least get a better message using `expect()`" } declare_clippy_lint! { /// **What it does:** Checks for `.expect()` calls on `Option`s and `Result`s. /// /// **Why is this bad?** Usually it is better to handle the `None` or `Err` case. /// Still, for a lot of quick-and-dirty code, `expect` is a good choice, which is why /// this lint is `Allow` by default. /// /// `result.expect()` will let the thread panic on `Err` /// values. Normally, you want to implement more sophisticated error handling, /// and propagate errors upwards with `?` operator. /// /// **Known problems:** None. /// /// **Examples:** /// ```rust,ignore /// # let opt = Some(1); /// /// // Bad /// opt.expect("one"); /// /// // Good /// let opt = Some(1); /// opt?; /// ``` /// /// // or /// /// ```rust /// # let res: Result = Ok(1); /// /// // Bad /// res.expect("one"); /// /// // Good /// res?; /// # Ok::<(), ()>(()) /// ``` pub EXPECT_USED, restriction, "using `.expect()` on `Result` or `Option`, which might be better handled" } declare_clippy_lint! { /// **What it does:** Checks for methods that should live in a trait /// implementation of a `std` trait (see [llogiq's blog /// post](http://llogiq.github.io/2015/07/30/traits.html) for further /// information) instead of an inherent implementation. /// /// **Why is this bad?** Implementing the traits improve ergonomics for users of /// the code, often with very little cost. Also people seeing a `mul(...)` /// method /// may expect `*` to work equally, so you should have good reason to disappoint /// them. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// struct X; /// impl X { /// fn add(&self, other: &X) -> X { /// // .. /// # X /// } /// } /// ``` pub SHOULD_IMPLEMENT_TRAIT, style, "defining a method that should be implementing a std trait" } declare_clippy_lint! { /// **What it does:** Checks for methods with certain name prefixes and which /// doesn't match how self is taken. The actual rules are: /// /// |Prefix |Postfix |`self` taken | `self` type | /// |-------|------------|-----------------------|--------------| /// |`as_` | none |`&self` or `&mut self` | any | /// |`from_`| none | none | any | /// |`into_`| none |`self` | any | /// |`is_` | none |`&self` or none | any | /// |`to_` | `_mut` |`&mut self` | any | /// |`to_` | not `_mut` |`self` | `Copy` | /// |`to_` | not `_mut` |`&self` | not `Copy` | /// /// Note: Clippy doesn't trigger methods with `to_` prefix in: /// - Traits definition. /// Clippy can not tell if a type that implements a trait is `Copy` or not. /// - Traits implementation, when `&self` is taken. /// The method signature is controlled by the trait and often `&self` is required for all types that implement the trait /// (see e.g. the `std::string::ToString` trait). /// /// Please find more info here: /// https://rust-lang.github.io/api-guidelines/naming.html#ad-hoc-conversions-follow-as_-to_-into_-conventions-c-conv /// /// **Why is this bad?** Consistency breeds readability. If you follow the /// conventions, your users won't be surprised that they, e.g., need to supply a /// mutable reference to a `as_..` function. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// # struct X; /// impl X { /// fn as_str(self) -> &'static str { /// // .. /// # "" /// } /// } /// ``` pub WRONG_SELF_CONVENTION, style, "defining a method named with an established prefix (like \"into_\") that takes `self` with the wrong convention" } declare_clippy_lint! { /// **What it does:** This is the same as /// [`wrong_self_convention`](#wrong_self_convention), but for public items. /// /// **Why is this bad?** See [`wrong_self_convention`](#wrong_self_convention). /// /// **Known problems:** Actually *renaming* the function may break clients if /// the function is part of the public interface. In that case, be mindful of /// the stability guarantees you've given your users. /// /// **Example:** /// ```rust /// # struct X; /// impl<'a> X { /// pub fn as_str(self) -> &'a str { /// "foo" /// } /// } /// ``` pub WRONG_PUB_SELF_CONVENTION, restriction, "defining a public method named with an established prefix (like \"into_\") that takes `self` with the wrong convention" } declare_clippy_lint! { /// **What it does:** Checks for usage of `ok().expect(..)`. /// /// **Why is this bad?** Because you usually call `expect()` on the `Result` /// directly to get a better error message. /// /// **Known problems:** The error type needs to implement `Debug` /// /// **Example:** /// ```rust /// # let x = Ok::<_, ()>(()); /// /// // Bad /// x.ok().expect("why did I do this again?"); /// /// // Good /// x.expect("why did I do this again?"); /// ``` pub OK_EXPECT, style, "using `ok().expect()`, which gives worse error messages than calling `expect` directly on the Result" } declare_clippy_lint! { /// **What it does:** Checks for usage of `option.map(_).unwrap_or(_)` or `option.map(_).unwrap_or_else(_)` or /// `result.map(_).unwrap_or_else(_)`. /// /// **Why is this bad?** Readability, these can be written more concisely (resp.) as /// `option.map_or(_, _)`, `option.map_or_else(_, _)` and `result.map_or_else(_, _)`. /// /// **Known problems:** The order of the arguments is not in execution order /// /// **Examples:** /// ```rust /// # let x = Some(1); /// /// // Bad /// x.map(|a| a + 1).unwrap_or(0); /// /// // Good /// x.map_or(0, |a| a + 1); /// ``` /// /// // or /// /// ```rust /// # let x: Result = Ok(1); /// # fn some_function(foo: ()) -> usize { 1 } /// /// // Bad /// x.map(|a| a + 1).unwrap_or_else(some_function); /// /// // Good /// x.map_or_else(some_function, |a| a + 1); /// ``` pub MAP_UNWRAP_OR, pedantic, "using `.map(f).unwrap_or(a)` or `.map(f).unwrap_or_else(func)`, which are more succinctly expressed as `map_or(a, f)` or `map_or_else(a, f)`" } declare_clippy_lint! { /// **What it does:** Checks for usage of `_.map_or(None, _)`. /// /// **Why is this bad?** Readability, this can be written more concisely as /// `_.and_then(_)`. /// /// **Known problems:** The order of the arguments is not in execution order. /// /// **Example:** /// ```rust /// # let opt = Some(1); /// /// // Bad /// opt.map_or(None, |a| Some(a + 1)); /// /// // Good /// opt.and_then(|a| Some(a + 1)); /// ``` pub OPTION_MAP_OR_NONE, style, "using `Option.map_or(None, f)`, which is more succinctly expressed as `and_then(f)`" } declare_clippy_lint! { /// **What it does:** Checks for usage of `_.map_or(None, Some)`. /// /// **Why is this bad?** Readability, this can be written more concisely as /// `_.ok()`. /// /// **Known problems:** None. /// /// **Example:** /// /// Bad: /// ```rust /// # let r: Result = Ok(1); /// assert_eq!(Some(1), r.map_or(None, Some)); /// ``` /// /// Good: /// ```rust /// # let r: Result = Ok(1); /// assert_eq!(Some(1), r.ok()); /// ``` pub RESULT_MAP_OR_INTO_OPTION, style, "using `Result.map_or(None, Some)`, which is more succinctly expressed as `ok()`" } declare_clippy_lint! { /// **What it does:** Checks for usage of `_.and_then(|x| Some(y))`, `_.and_then(|x| Ok(y))` or /// `_.or_else(|x| Err(y))`. /// /// **Why is this bad?** Readability, this can be written more concisely as /// `_.map(|x| y)` or `_.map_err(|x| y)`. /// /// **Known problems:** None /// /// **Example:** /// /// ```rust /// # fn opt() -> Option<&'static str> { Some("42") } /// # fn res() -> Result<&'static str, &'static str> { Ok("42") } /// let _ = opt().and_then(|s| Some(s.len())); /// let _ = res().and_then(|s| if s.len() == 42 { Ok(10) } else { Ok(20) }); /// let _ = res().or_else(|s| if s.len() == 42 { Err(10) } else { Err(20) }); /// ``` /// /// The correct use would be: /// /// ```rust /// # fn opt() -> Option<&'static str> { Some("42") } /// # fn res() -> Result<&'static str, &'static str> { Ok("42") } /// let _ = opt().map(|s| s.len()); /// let _ = res().map(|s| if s.len() == 42 { 10 } else { 20 }); /// let _ = res().map_err(|s| if s.len() == 42 { 10 } else { 20 }); /// ``` pub BIND_INSTEAD_OF_MAP, complexity, "using `Option.and_then(|x| Some(y))`, which is more succinctly expressed as `map(|x| y)`" } declare_clippy_lint! { /// **What it does:** Checks for usage of `_.filter(_).next()`. /// /// **Why is this bad?** Readability, this can be written more concisely as /// `_.find(_)`. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// # let vec = vec![1]; /// vec.iter().filter(|x| **x == 0).next(); /// ``` /// Could be written as /// ```rust /// # let vec = vec![1]; /// vec.iter().find(|x| **x == 0); /// ``` pub FILTER_NEXT, complexity, "using `filter(p).next()`, which is more succinctly expressed as `.find(p)`" } declare_clippy_lint! { /// **What it does:** Checks for usage of `_.skip_while(condition).next()`. /// /// **Why is this bad?** Readability, this can be written more concisely as /// `_.find(!condition)`. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// # let vec = vec![1]; /// vec.iter().skip_while(|x| **x == 0).next(); /// ``` /// Could be written as /// ```rust /// # let vec = vec![1]; /// vec.iter().find(|x| **x != 0); /// ``` pub SKIP_WHILE_NEXT, complexity, "using `skip_while(p).next()`, which is more succinctly expressed as `.find(!p)`" } declare_clippy_lint! { /// **What it does:** Checks for usage of `_.map(_).flatten(_)` on `Iterator` and `Option` /// /// **Why is this bad?** Readability, this can be written more concisely as /// `_.flat_map(_)` /// /// **Known problems:** /// /// **Example:** /// ```rust /// let vec = vec![vec![1]]; /// /// // Bad /// vec.iter().map(|x| x.iter()).flatten(); /// /// // Good /// vec.iter().flat_map(|x| x.iter()); /// ``` pub MAP_FLATTEN, pedantic, "using combinations of `flatten` and `map` which can usually be written as a single method call" } declare_clippy_lint! { /// **What it does:** Checks for usage of `_.filter(_).map(_)`, /// `_.filter(_).flat_map(_)`, `_.filter_map(_).flat_map(_)` and similar. /// /// **Why is this bad?** Readability, this can be written more concisely as /// `_.filter_map(_)`. /// /// **Known problems:** Often requires a condition + Option/Iterator creation /// inside the closure. /// /// **Example:** /// ```rust /// let vec = vec![1]; /// /// // Bad /// vec.iter().filter(|x| **x == 0).map(|x| *x * 2); /// /// // Good /// vec.iter().filter_map(|x| if *x == 0 { /// Some(*x * 2) /// } else { /// None /// }); /// ``` pub FILTER_MAP, pedantic, "using combinations of `filter`, `map`, `filter_map` and `flat_map` which can usually be written as a single method call" } declare_clippy_lint! { /// **What it does:** Checks for usage of `_.filter(_).map(_)` that can be written more simply /// as `filter_map(_)`. /// /// **Why is this bad?** Redundant code in the `filter` and `map` operations is poor style and /// less performant. /// /// **Known problems:** None. /// /// **Example:** /// Bad: /// ```rust /// (0_i32..10) /// .filter(|n| n.checked_add(1).is_some()) /// .map(|n| n.checked_add(1).unwrap()); /// ``` /// /// Good: /// ```rust /// (0_i32..10).filter_map(|n| n.checked_add(1)); /// ``` pub MANUAL_FILTER_MAP, complexity, "using `_.filter(_).map(_)` in a way that can be written more simply as `filter_map(_)`" } declare_clippy_lint! { /// **What it does:** Checks for usage of `_.find(_).map(_)` that can be written more simply /// as `find_map(_)`. /// /// **Why is this bad?** Redundant code in the `find` and `map` operations is poor style and /// less performant. /// /// **Known problems:** None. /// /// **Example:** /// Bad: /// ```rust /// (0_i32..10) /// .find(|n| n.checked_add(1).is_some()) /// .map(|n| n.checked_add(1).unwrap()); /// ``` /// /// Good: /// ```rust /// (0_i32..10).find_map(|n| n.checked_add(1)); /// ``` pub MANUAL_FIND_MAP, complexity, "using `_.find(_).map(_)` in a way that can be written more simply as `find_map(_)`" } declare_clippy_lint! { /// **What it does:** Checks for usage of `_.filter_map(_).next()`. /// /// **Why is this bad?** Readability, this can be written more concisely as /// `_.find_map(_)`. /// /// **Known problems:** None /// /// **Example:** /// ```rust /// (0..3).filter_map(|x| if x == 2 { Some(x) } else { None }).next(); /// ``` /// Can be written as /// /// ```rust /// (0..3).find_map(|x| if x == 2 { Some(x) } else { None }); /// ``` pub FILTER_MAP_NEXT, pedantic, "using combination of `filter_map` and `next` which can usually be written as a single method call" } declare_clippy_lint! { /// **What it does:** Checks for usage of `flat_map(|x| x)`. /// /// **Why is this bad?** Readability, this can be written more concisely by using `flatten`. /// /// **Known problems:** None /// /// **Example:** /// ```rust /// # let iter = vec![vec![0]].into_iter(); /// iter.flat_map(|x| x); /// ``` /// Can be written as /// ```rust /// # let iter = vec![vec![0]].into_iter(); /// iter.flatten(); /// ``` pub FLAT_MAP_IDENTITY, complexity, "call to `flat_map` where `flatten` is sufficient" } declare_clippy_lint! { /// **What it does:** Checks for an iterator or string search (such as `find()`, /// `position()`, or `rposition()`) followed by a call to `is_some()` or `is_none()`. /// /// **Why is this bad?** Readability, this can be written more concisely as: /// * `_.any(_)`, or `_.contains(_)` for `is_some()`, /// * `!_.any(_)`, or `!_.contains(_)` for `is_none()`. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// let vec = vec![1]; /// vec.iter().find(|x| **x == 0).is_some(); /// /// let _ = "hello world".find("world").is_none(); /// ``` /// Could be written as /// ```rust /// let vec = vec![1]; /// vec.iter().any(|x| *x == 0); /// /// let _ = !"hello world".contains("world"); /// ``` pub SEARCH_IS_SOME, complexity, "using an iterator or string search followed by `is_some()` or `is_none()`, which is more succinctly expressed as a call to `any()` or `contains()` (with negation in case of `is_none()`)" } declare_clippy_lint! { /// **What it does:** Checks for usage of `.chars().next()` on a `str` to check /// if it starts with a given char. /// /// **Why is this bad?** Readability, this can be written more concisely as /// `_.starts_with(_)`. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// let name = "foo"; /// if name.chars().next() == Some('_') {}; /// ``` /// Could be written as /// ```rust /// let name = "foo"; /// if name.starts_with('_') {}; /// ``` pub CHARS_NEXT_CMP, style, "using `.chars().next()` to check if a string starts with a char" } declare_clippy_lint! { /// **What it does:** Checks for calls to `.or(foo(..))`, `.unwrap_or(foo(..))`, /// etc., and suggests to use `or_else`, `unwrap_or_else`, etc., or /// `unwrap_or_default` instead. /// /// **Why is this bad?** The function will always be called and potentially /// allocate an object acting as the default. /// /// **Known problems:** If the function has side-effects, not calling it will /// change the semantic of the program, but you shouldn't rely on that anyway. /// /// **Example:** /// ```rust /// # let foo = Some(String::new()); /// foo.unwrap_or(String::new()); /// ``` /// this can instead be written: /// ```rust /// # let foo = Some(String::new()); /// foo.unwrap_or_else(String::new); /// ``` /// or /// ```rust /// # let foo = Some(String::new()); /// foo.unwrap_or_default(); /// ``` pub OR_FUN_CALL, perf, "using any `*or` method with a function call, which suggests `*or_else`" } declare_clippy_lint! { /// **What it does:** Checks for calls to `.expect(&format!(...))`, `.expect(foo(..))`, /// etc., and suggests to use `unwrap_or_else` instead /// /// **Why is this bad?** The function will always be called. /// /// **Known problems:** If the function has side-effects, not calling it will /// change the semantics of the program, but you shouldn't rely on that anyway. /// /// **Example:** /// ```rust /// # let foo = Some(String::new()); /// # let err_code = "418"; /// # let err_msg = "I'm a teapot"; /// foo.expect(&format!("Err {}: {}", err_code, err_msg)); /// ``` /// or /// ```rust /// # let foo = Some(String::new()); /// # let err_code = "418"; /// # let err_msg = "I'm a teapot"; /// foo.expect(format!("Err {}: {}", err_code, err_msg).as_str()); /// ``` /// this can instead be written: /// ```rust /// # let foo = Some(String::new()); /// # let err_code = "418"; /// # let err_msg = "I'm a teapot"; /// foo.unwrap_or_else(|| panic!("Err {}: {}", err_code, err_msg)); /// ``` pub EXPECT_FUN_CALL, perf, "using any `expect` method with a function call" } declare_clippy_lint! { /// **What it does:** Checks for usage of `.clone()` on a `Copy` type. /// /// **Why is this bad?** The only reason `Copy` types implement `Clone` is for /// generics, not for using the `clone` method on a concrete type. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// 42u64.clone(); /// ``` pub CLONE_ON_COPY, complexity, "using `clone` on a `Copy` type" } declare_clippy_lint! { /// **What it does:** Checks for usage of `.clone()` on a ref-counted pointer, /// (`Rc`, `Arc`, `rc::Weak`, or `sync::Weak`), and suggests calling Clone via unified /// function syntax instead (e.g., `Rc::clone(foo)`). /// /// **Why is this bad?** Calling '.clone()' on an Rc, Arc, or Weak /// can obscure the fact that only the pointer is being cloned, not the underlying /// data. /// /// **Example:** /// ```rust /// # use std::rc::Rc; /// let x = Rc::new(1); /// /// // Bad /// x.clone(); /// /// // Good /// Rc::clone(&x); /// ``` pub CLONE_ON_REF_PTR, restriction, "using 'clone' on a ref-counted pointer" } declare_clippy_lint! { /// **What it does:** Checks for usage of `.clone()` on an `&&T`. /// /// **Why is this bad?** Cloning an `&&T` copies the inner `&T`, instead of /// cloning the underlying `T`. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// fn main() { /// let x = vec![1]; /// let y = &&x; /// let z = y.clone(); /// println!("{:p} {:p}", *y, z); // prints out the same pointer /// } /// ``` pub CLONE_DOUBLE_REF, correctness, "using `clone` on `&&T`" } declare_clippy_lint! { /// **What it does:** Checks for usage of `.to_string()` on an `&&T` where /// `T` implements `ToString` directly (like `&&str` or `&&String`). /// /// **Why is this bad?** This bypasses the specialized implementation of /// `ToString` and instead goes through the more expensive string formatting /// facilities. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// // Generic implementation for `T: Display` is used (slow) /// ["foo", "bar"].iter().map(|s| s.to_string()); /// /// // OK, the specialized impl is used /// ["foo", "bar"].iter().map(|&s| s.to_string()); /// ``` pub INEFFICIENT_TO_STRING, pedantic, "using `to_string` on `&&T` where `T: ToString`" } declare_clippy_lint! { /// **What it does:** Checks for `new` not returning a type that contains `Self`. /// /// **Why is this bad?** As a convention, `new` methods are used to make a new /// instance of a type. /// /// **Known problems:** None. /// /// **Example:** /// In an impl block: /// ```rust /// # struct Foo; /// # struct NotAFoo; /// impl Foo { /// fn new() -> NotAFoo { /// # NotAFoo /// } /// } /// ``` /// /// ```rust /// # struct Foo; /// struct Bar(Foo); /// impl Foo { /// // Bad. The type name must contain `Self` /// fn new() -> Bar { /// # Bar(Foo) /// } /// } /// ``` /// /// ```rust /// # struct Foo; /// # struct FooError; /// impl Foo { /// // Good. Return type contains `Self` /// fn new() -> Result { /// # Ok(Foo) /// } /// } /// ``` /// /// Or in a trait definition: /// ```rust /// pub trait Trait { /// // Bad. The type name must contain `Self` /// fn new(); /// } /// ``` /// /// ```rust /// pub trait Trait { /// // Good. Return type contains `Self` /// fn new() -> Self; /// } /// ``` pub NEW_RET_NO_SELF, style, "not returning type containing `Self` in a `new` method" } declare_clippy_lint! { /// **What it does:** Checks for string methods that receive a single-character /// `str` as an argument, e.g., `_.split("x")`. /// /// **Why is this bad?** Performing these methods using a `char` is faster than /// using a `str`. /// /// **Known problems:** Does not catch multi-byte unicode characters. /// /// **Example:** /// ```rust,ignore /// // Bad /// _.split("x"); /// /// // Good /// _.split('x'); pub SINGLE_CHAR_PATTERN, perf, "using a single-character str where a char could be used, e.g., `_.split(\"x\")`" } declare_clippy_lint! { /// **What it does:** Checks for calling `.step_by(0)` on iterators which panics. /// /// **Why is this bad?** This very much looks like an oversight. Use `panic!()` instead if you /// actually intend to panic. /// /// **Known problems:** None. /// /// **Example:** /// ```rust,should_panic /// for x in (0..100).step_by(0) { /// //.. /// } /// ``` pub ITERATOR_STEP_BY_ZERO, correctness, "using `Iterator::step_by(0)`, which will panic at runtime" } declare_clippy_lint! { /// **What it does:** Checks for indirect collection of populated `Option` /// /// **Why is this bad?** `Option` is like a collection of 0-1 things, so `flatten` /// automatically does this without suspicious-looking `unwrap` calls. /// /// **Known problems:** None. /// /// **Example:** /// /// ```rust /// let _ = std::iter::empty::>().filter(Option::is_some).map(Option::unwrap); /// ``` /// Use instead: /// ```rust /// let _ = std::iter::empty::>().flatten(); /// ``` pub OPTION_FILTER_MAP, complexity, "filtering `Option` for `Some` then force-unwrapping, which can be one type-safe operation" } declare_clippy_lint! { /// **What it does:** Checks for the use of `iter.nth(0)`. /// /// **Why is this bad?** `iter.next()` is equivalent to /// `iter.nth(0)`, as they both consume the next element, /// but is more readable. /// /// **Known problems:** None. /// /// **Example:** /// /// ```rust /// # use std::collections::HashSet; /// // Bad /// # let mut s = HashSet::new(); /// # s.insert(1); /// let x = s.iter().nth(0); /// /// // Good /// # let mut s = HashSet::new(); /// # s.insert(1); /// let x = s.iter().next(); /// ``` pub ITER_NTH_ZERO, style, "replace `iter.nth(0)` with `iter.next()`" } declare_clippy_lint! { /// **What it does:** Checks for use of `.iter().nth()` (and the related /// `.iter_mut().nth()`) on standard library types with O(1) element access. /// /// **Why is this bad?** `.get()` and `.get_mut()` are more efficient and more /// readable. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// let some_vec = vec![0, 1, 2, 3]; /// let bad_vec = some_vec.iter().nth(3); /// let bad_slice = &some_vec[..].iter().nth(3); /// ``` /// The correct use would be: /// ```rust /// let some_vec = vec![0, 1, 2, 3]; /// let bad_vec = some_vec.get(3); /// let bad_slice = &some_vec[..].get(3); /// ``` pub ITER_NTH, perf, "using `.iter().nth()` on a standard library type with O(1) element access" } declare_clippy_lint! { /// **What it does:** Checks for use of `.skip(x).next()` on iterators. /// /// **Why is this bad?** `.nth(x)` is cleaner /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// let some_vec = vec![0, 1, 2, 3]; /// let bad_vec = some_vec.iter().skip(3).next(); /// let bad_slice = &some_vec[..].iter().skip(3).next(); /// ``` /// The correct use would be: /// ```rust /// let some_vec = vec![0, 1, 2, 3]; /// let bad_vec = some_vec.iter().nth(3); /// let bad_slice = &some_vec[..].iter().nth(3); /// ``` pub ITER_SKIP_NEXT, style, "using `.skip(x).next()` on an iterator" } declare_clippy_lint! { /// **What it does:** Checks for use of `.get().unwrap()` (or /// `.get_mut().unwrap`) on a standard library type which implements `Index` /// /// **Why is this bad?** Using the Index trait (`[]`) is more clear and more /// concise. /// /// **Known problems:** Not a replacement for error handling: Using either /// `.unwrap()` or the Index trait (`[]`) carries the risk of causing a `panic` /// if the value being accessed is `None`. If the use of `.get().unwrap()` is a /// temporary placeholder for dealing with the `Option` type, then this does /// not mitigate the need for error handling. If there is a chance that `.get()` /// will be `None` in your program, then it is advisable that the `None` case /// is handled in a future refactor instead of using `.unwrap()` or the Index /// trait. /// /// **Example:** /// ```rust /// let mut some_vec = vec![0, 1, 2, 3]; /// let last = some_vec.get(3).unwrap(); /// *some_vec.get_mut(0).unwrap() = 1; /// ``` /// The correct use would be: /// ```rust /// let mut some_vec = vec![0, 1, 2, 3]; /// let last = some_vec[3]; /// some_vec[0] = 1; /// ``` pub GET_UNWRAP, restriction, "using `.get().unwrap()` or `.get_mut().unwrap()` when using `[]` would work instead" } declare_clippy_lint! { /// **What it does:** Checks for the use of `.extend(s.chars())` where s is a /// `&str` or `String`. /// /// **Why is this bad?** `.push_str(s)` is clearer /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// let abc = "abc"; /// let def = String::from("def"); /// let mut s = String::new(); /// s.extend(abc.chars()); /// s.extend(def.chars()); /// ``` /// The correct use would be: /// ```rust /// let abc = "abc"; /// let def = String::from("def"); /// let mut s = String::new(); /// s.push_str(abc); /// s.push_str(&def); /// ``` pub STRING_EXTEND_CHARS, style, "using `x.extend(s.chars())` where s is a `&str` or `String`" } declare_clippy_lint! { /// **What it does:** Checks for the use of `.cloned().collect()` on slice to /// create a `Vec`. /// /// **Why is this bad?** `.to_vec()` is clearer /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// let s = [1, 2, 3, 4, 5]; /// let s2: Vec = s[..].iter().cloned().collect(); /// ``` /// The better use would be: /// ```rust /// let s = [1, 2, 3, 4, 5]; /// let s2: Vec = s.to_vec(); /// ``` pub ITER_CLONED_COLLECT, style, "using `.cloned().collect()` on slice to create a `Vec`" } declare_clippy_lint! { /// **What it does:** Checks for usage of `_.chars().last()` or /// `_.chars().next_back()` on a `str` to check if it ends with a given char. /// /// **Why is this bad?** Readability, this can be written more concisely as /// `_.ends_with(_)`. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// # let name = "_"; /// /// // Bad /// name.chars().last() == Some('_') || name.chars().next_back() == Some('-'); /// /// // Good /// name.ends_with('_') || name.ends_with('-'); /// ``` pub CHARS_LAST_CMP, style, "using `.chars().last()` or `.chars().next_back()` to check if a string ends with a char" } declare_clippy_lint! { /// **What it does:** Checks for usage of `.as_ref()` or `.as_mut()` where the /// types before and after the call are the same. /// /// **Why is this bad?** The call is unnecessary. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// # fn do_stuff(x: &[i32]) {} /// let x: &[i32] = &[1, 2, 3, 4, 5]; /// do_stuff(x.as_ref()); /// ``` /// The correct use would be: /// ```rust /// # fn do_stuff(x: &[i32]) {} /// let x: &[i32] = &[1, 2, 3, 4, 5]; /// do_stuff(x); /// ``` pub USELESS_ASREF, complexity, "using `as_ref` where the types before and after the call are the same" } declare_clippy_lint! { /// **What it does:** Checks for using `fold` when a more succinct alternative exists. /// Specifically, this checks for `fold`s which could be replaced by `any`, `all`, /// `sum` or `product`. /// /// **Why is this bad?** Readability. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// let _ = (0..3).fold(false, |acc, x| acc || x > 2); /// ``` /// This could be written as: /// ```rust /// let _ = (0..3).any(|x| x > 2); /// ``` pub UNNECESSARY_FOLD, style, "using `fold` when a more succinct alternative exists" } declare_clippy_lint! { /// **What it does:** Checks for `filter_map` calls which could be replaced by `filter` or `map`. /// More specifically it checks if the closure provided is only performing one of the /// filter or map operations and suggests the appropriate option. /// /// **Why is this bad?** Complexity. The intent is also clearer if only a single /// operation is being performed. /// /// **Known problems:** None /// /// **Example:** /// ```rust /// let _ = (0..3).filter_map(|x| if x > 2 { Some(x) } else { None }); /// /// // As there is no transformation of the argument this could be written as: /// let _ = (0..3).filter(|&x| x > 2); /// ``` /// /// ```rust /// let _ = (0..4).filter_map(|x| Some(x + 1)); /// /// // As there is no conditional check on the argument this could be written as: /// let _ = (0..4).map(|x| x + 1); /// ``` pub UNNECESSARY_FILTER_MAP, complexity, "using `filter_map` when a more succinct alternative exists" } declare_clippy_lint! { /// **What it does:** Checks for `into_iter` calls on references which should be replaced by `iter` /// or `iter_mut`. /// /// **Why is this bad?** Readability. Calling `into_iter` on a reference will not move out its /// content into the resulting iterator, which is confusing. It is better just call `iter` or /// `iter_mut` directly. /// /// **Known problems:** None /// /// **Example:** /// /// ```rust /// // Bad /// let _ = (&vec![3, 4, 5]).into_iter(); /// /// // Good /// let _ = (&vec![3, 4, 5]).iter(); /// ``` pub INTO_ITER_ON_REF, style, "using `.into_iter()` on a reference" } declare_clippy_lint! { /// **What it does:** Checks for calls to `map` followed by a `count`. /// /// **Why is this bad?** It looks suspicious. Maybe `map` was confused with `filter`. /// If the `map` call is intentional, this should be rewritten. Or, if you intend to /// drive the iterator to completion, you can just use `for_each` instead. /// /// **Known problems:** None /// /// **Example:** /// /// ```rust /// let _ = (0..3).map(|x| x + 2).count(); /// ``` pub SUSPICIOUS_MAP, complexity, "suspicious usage of map" } declare_clippy_lint! { /// **What it does:** Checks for `MaybeUninit::uninit().assume_init()`. /// /// **Why is this bad?** For most types, this is undefined behavior. /// /// **Known problems:** For now, we accept empty tuples and tuples / arrays /// of `MaybeUninit`. There may be other types that allow uninitialized /// data, but those are not yet rigorously defined. /// /// **Example:** /// /// ```rust /// // Beware the UB /// use std::mem::MaybeUninit; /// /// let _: usize = unsafe { MaybeUninit::uninit().assume_init() }; /// ``` /// /// Note that the following is OK: /// /// ```rust /// use std::mem::MaybeUninit; /// /// let _: [MaybeUninit; 5] = unsafe { /// MaybeUninit::uninit().assume_init() /// }; /// ``` pub UNINIT_ASSUMED_INIT, correctness, "`MaybeUninit::uninit().assume_init()`" } declare_clippy_lint! { /// **What it does:** Checks for `.checked_add/sub(x).unwrap_or(MAX/MIN)`. /// /// **Why is this bad?** These can be written simply with `saturating_add/sub` methods. /// /// **Example:** /// /// ```rust /// # let y: u32 = 0; /// # let x: u32 = 100; /// let add = x.checked_add(y).unwrap_or(u32::MAX); /// let sub = x.checked_sub(y).unwrap_or(u32::MIN); /// ``` /// /// can be written using dedicated methods for saturating addition/subtraction as: /// /// ```rust /// # let y: u32 = 0; /// # let x: u32 = 100; /// let add = x.saturating_add(y); /// let sub = x.saturating_sub(y); /// ``` pub MANUAL_SATURATING_ARITHMETIC, style, "`.chcked_add/sub(x).unwrap_or(MAX/MIN)`" } declare_clippy_lint! { /// **What it does:** Checks for `offset(_)`, `wrapping_`{`add`, `sub`}, etc. on raw pointers to /// zero-sized types /// /// **Why is this bad?** This is a no-op, and likely unintended /// /// **Known problems:** None /// /// **Example:** /// ```rust /// unsafe { (&() as *const ()).offset(1) }; /// ``` pub ZST_OFFSET, correctness, "Check for offset calculations on raw pointers to zero-sized types" } declare_clippy_lint! { /// **What it does:** Checks for `FileType::is_file()`. /// /// **Why is this bad?** When people testing a file type with `FileType::is_file` /// they are testing whether a path is something they can get bytes from. But /// `is_file` doesn't cover special file types in unix-like systems, and doesn't cover /// symlink in windows. Using `!FileType::is_dir()` is a better way to that intention. /// /// **Example:** /// /// ```rust /// # || { /// let metadata = std::fs::metadata("foo.txt")?; /// let filetype = metadata.file_type(); /// /// if filetype.is_file() { /// // read file /// } /// # Ok::<_, std::io::Error>(()) /// # }; /// ``` /// /// should be written as: /// /// ```rust /// # || { /// let metadata = std::fs::metadata("foo.txt")?; /// let filetype = metadata.file_type(); /// /// if !filetype.is_dir() { /// // read file /// } /// # Ok::<_, std::io::Error>(()) /// # }; /// ``` pub FILETYPE_IS_FILE, restriction, "`FileType::is_file` is not recommended to test for readable file type" } declare_clippy_lint! { /// **What it does:** Checks for usage of `_.as_ref().map(Deref::deref)` or it's aliases (such as String::as_str). /// /// **Why is this bad?** Readability, this can be written more concisely as /// `_.as_deref()`. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// # let opt = Some("".to_string()); /// opt.as_ref().map(String::as_str) /// # ; /// ``` /// Can be written as /// ```rust /// # let opt = Some("".to_string()); /// opt.as_deref() /// # ; /// ``` pub OPTION_AS_REF_DEREF, complexity, "using `as_ref().map(Deref::deref)`, which is more succinctly expressed as `as_deref()`" } declare_clippy_lint! { /// **What it does:** Checks for usage of `iter().next()` on a Slice or an Array /// /// **Why is this bad?** These can be shortened into `.get()` /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// # let a = [1, 2, 3]; /// # let b = vec![1, 2, 3]; /// a[2..].iter().next(); /// b.iter().next(); /// ``` /// should be written as: /// ```rust /// # let a = [1, 2, 3]; /// # let b = vec![1, 2, 3]; /// a.get(2); /// b.get(0); /// ``` pub ITER_NEXT_SLICE, style, "using `.iter().next()` on a sliced array, which can be shortened to just `.get()`" } declare_clippy_lint! { /// **What it does:** Warns when using `push_str`/`insert_str` with a single-character string literal /// where `push`/`insert` with a `char` would work fine. /// /// **Why is this bad?** It's less clear that we are pushing a single character. /// /// **Known problems:** None /// /// **Example:** /// ```rust /// let mut string = String::new(); /// string.insert_str(0, "R"); /// string.push_str("R"); /// ``` /// Could be written as /// ```rust /// let mut string = String::new(); /// string.insert(0, 'R'); /// string.push('R'); /// ``` pub SINGLE_CHAR_ADD_STR, style, "`push_str()` or `insert_str()` used with a single-character string literal as parameter" } declare_clippy_lint! { /// **What it does:** As the counterpart to `or_fun_call`, this lint looks for unnecessary /// lazily evaluated closures on `Option` and `Result`. /// /// This lint suggests changing the following functions, when eager evaluation results in /// simpler code: /// - `unwrap_or_else` to `unwrap_or` /// - `and_then` to `and` /// - `or_else` to `or` /// - `get_or_insert_with` to `get_or_insert` /// - `ok_or_else` to `ok_or` /// /// **Why is this bad?** Using eager evaluation is shorter and simpler in some cases. /// /// **Known problems:** It is possible, but not recommended for `Deref` and `Index` to have /// side effects. Eagerly evaluating them can change the semantics of the program. /// /// **Example:** /// /// ```rust /// // example code where clippy issues a warning /// let opt: Option = None; /// /// opt.unwrap_or_else(|| 42); /// ``` /// Use instead: /// ```rust /// let opt: Option = None; /// /// opt.unwrap_or(42); /// ``` pub UNNECESSARY_LAZY_EVALUATIONS, style, "using unnecessary lazy evaluation, which can be replaced with simpler eager evaluation" } declare_clippy_lint! { /// **What it does:** Checks for usage of `_.map(_).collect::()`. /// /// **Why is this bad?** Using `try_for_each` instead is more readable and idiomatic. /// /// **Known problems:** None /// /// **Example:** /// /// ```rust /// (0..3).map(|t| Err(t)).collect::>(); /// ``` /// Use instead: /// ```rust /// (0..3).try_for_each(|t| Err(t)); /// ``` pub MAP_COLLECT_RESULT_UNIT, style, "using `.map(_).collect::()`, which can be replaced with `try_for_each`" } declare_clippy_lint! { /// **What it does:** Checks for `from_iter()` function calls on types that implement the `FromIterator` /// trait. /// /// **Why is this bad?** It is recommended style to use collect. See /// [FromIterator documentation](https://doc.rust-lang.org/std/iter/trait.FromIterator.html) /// /// **Known problems:** None. /// /// **Example:** /// /// ```rust /// use std::iter::FromIterator; /// /// let five_fives = std::iter::repeat(5).take(5); /// /// let v = Vec::from_iter(five_fives); /// /// assert_eq!(v, vec![5, 5, 5, 5, 5]); /// ``` /// Use instead: /// ```rust /// let five_fives = std::iter::repeat(5).take(5); /// /// let v: Vec = five_fives.collect(); /// /// assert_eq!(v, vec![5, 5, 5, 5, 5]); /// ``` pub FROM_ITER_INSTEAD_OF_COLLECT, style, "use `.collect()` instead of `::from_iter()`" } declare_clippy_lint! { /// **What it does:** Checks for usage of `inspect().for_each()`. /// /// **Why is this bad?** It is the same as performing the computation /// inside `inspect` at the beginning of the closure in `for_each`. /// /// **Known problems:** None. /// /// **Example:** /// /// ```rust /// [1,2,3,4,5].iter() /// .inspect(|&x| println!("inspect the number: {}", x)) /// .for_each(|&x| { /// assert!(x >= 0); /// }); /// ``` /// Can be written as /// ```rust /// [1,2,3,4,5].iter() /// .for_each(|&x| { /// println!("inspect the number: {}", x); /// assert!(x >= 0); /// }); /// ``` pub INSPECT_FOR_EACH, complexity, "using `.inspect().for_each()`, which can be replaced with `.for_each()`" } declare_clippy_lint! { /// **What it does:** Checks for usage of `filter_map(|x| x)`. /// /// **Why is this bad?** Readability, this can be written more concisely by using `flatten`. /// /// **Known problems:** None. /// /// **Example:** /// /// ```rust /// # let iter = vec![Some(1)].into_iter(); /// iter.filter_map(|x| x); /// ``` /// Use instead: /// ```rust /// # let iter = vec![Some(1)].into_iter(); /// iter.flatten(); /// ``` pub FILTER_MAP_IDENTITY, complexity, "call to `filter_map` where `flatten` is sufficient" } declare_clippy_lint! { /// **What it does:** Checks for the use of `.bytes().nth()`. /// /// **Why is this bad?** `.as_bytes().get()` is more efficient and more /// readable. /// /// **Known problems:** None. /// /// **Example:** /// /// ```rust /// // Bad /// let _ = "Hello".bytes().nth(3); /// /// // Good /// let _ = "Hello".as_bytes().get(3); /// ``` pub BYTES_NTH, style, "replace `.bytes().nth()` with `.as_bytes().get()`" } declare_clippy_lint! { /// **What it does:** Checks for the usage of `_.to_owned()`, `vec.to_vec()`, or similar when calling `_.clone()` would be clearer. /// /// **Why is this bad?** These methods do the same thing as `_.clone()` but may be confusing as /// to why we are calling `to_vec` on something that is already a `Vec` or calling `to_owned` on something that is already owned. /// /// **Known problems:** None. /// /// **Example:** /// /// ```rust /// let a = vec![1, 2, 3]; /// let b = a.to_vec(); /// let c = a.to_owned(); /// ``` /// Use instead: /// ```rust /// let a = vec![1, 2, 3]; /// let b = a.clone(); /// let c = a.clone(); /// ``` pub IMPLICIT_CLONE, pedantic, "implicitly cloning a value by invoking a function on its dereferenced type" } declare_clippy_lint! { /// **What it does:** Checks for the use of `.iter().count()`. /// /// **Why is this bad?** `.len()` is more efficient and more /// readable. /// /// **Known problems:** None. /// /// **Example:** /// /// ```rust /// // Bad /// let some_vec = vec![0, 1, 2, 3]; /// let _ = some_vec.iter().count(); /// let _ = &some_vec[..].iter().count(); /// /// // Good /// let some_vec = vec![0, 1, 2, 3]; /// let _ = some_vec.len(); /// let _ = &some_vec[..].len(); /// ``` pub ITER_COUNT, complexity, "replace `.iter().count()` with `.len()`" } pub struct Methods { msrv: Option, } impl Methods { #[must_use] pub fn new(msrv: Option) -> Self { Self { msrv } } } impl_lint_pass!(Methods => [ UNWRAP_USED, EXPECT_USED, SHOULD_IMPLEMENT_TRAIT, WRONG_SELF_CONVENTION, WRONG_PUB_SELF_CONVENTION, OK_EXPECT, MAP_UNWRAP_OR, RESULT_MAP_OR_INTO_OPTION, OPTION_MAP_OR_NONE, BIND_INSTEAD_OF_MAP, OR_FUN_CALL, EXPECT_FUN_CALL, CHARS_NEXT_CMP, CHARS_LAST_CMP, CLONE_ON_COPY, CLONE_ON_REF_PTR, CLONE_DOUBLE_REF, INEFFICIENT_TO_STRING, NEW_RET_NO_SELF, SINGLE_CHAR_PATTERN, SINGLE_CHAR_ADD_STR, SEARCH_IS_SOME, FILTER_NEXT, SKIP_WHILE_NEXT, FILTER_MAP, FILTER_MAP_IDENTITY, MANUAL_FILTER_MAP, MANUAL_FIND_MAP, OPTION_FILTER_MAP, FILTER_MAP_NEXT, FLAT_MAP_IDENTITY, MAP_FLATTEN, ITERATOR_STEP_BY_ZERO, ITER_NEXT_SLICE, ITER_COUNT, ITER_NTH, ITER_NTH_ZERO, BYTES_NTH, ITER_SKIP_NEXT, GET_UNWRAP, STRING_EXTEND_CHARS, ITER_CLONED_COLLECT, USELESS_ASREF, UNNECESSARY_FOLD, UNNECESSARY_FILTER_MAP, INTO_ITER_ON_REF, SUSPICIOUS_MAP, UNINIT_ASSUMED_INIT, MANUAL_SATURATING_ARITHMETIC, ZST_OFFSET, FILETYPE_IS_FILE, OPTION_AS_REF_DEREF, UNNECESSARY_LAZY_EVALUATIONS, MAP_COLLECT_RESULT_UNIT, FROM_ITER_INSTEAD_OF_COLLECT, INSPECT_FOR_EACH, IMPLICIT_CLONE ]); /// Extracts a method call name, args, and `Span` of the method name. fn method_call<'tcx>(recv: &'tcx hir::Expr<'tcx>) -> Option<(SymbolStr, &'tcx [hir::Expr<'tcx>], Span)> { if let ExprKind::MethodCall(path, span, args, _) = recv.kind { if !args.iter().any(|e| e.span.from_expansion()) { return Some((path.ident.name.as_str(), args, span)); } } None } /// Same as `method_call` but the `SymbolStr` is dereferenced into a temporary `&str` macro_rules! method_call { ($expr:expr) => { method_call($expr) .as_ref() .map(|&(ref name, args, span)| (&**name, args, span)) }; } impl<'tcx> LateLintPass<'tcx> for Methods { fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx hir::Expr<'_>) { if in_macro(expr.span) { return; } check_methods(cx, expr, self.msrv.as_ref()); match expr.kind { hir::ExprKind::Call(func, args) => { from_iter_instead_of_collect::check(cx, expr, args, &func.kind); }, hir::ExprKind::MethodCall(method_call, ref method_span, args, _) => { or_fun_call::check(cx, expr, *method_span, &method_call.ident.as_str(), args); expect_fun_call::check(cx, expr, *method_span, &method_call.ident.as_str(), args); clone_on_copy::check(cx, expr, method_call.ident.name, args); clone_on_ref_ptr::check(cx, expr, method_call.ident.name, args); inefficient_to_string::check(cx, expr, method_call.ident.name, args); single_char_add_str::check(cx, expr, args); into_iter_on_ref::check(cx, expr, *method_span, method_call.ident.name, args); single_char_pattern::check(cx, expr, method_call.ident.name, args); }, hir::ExprKind::Binary(op, lhs, rhs) if op.node == hir::BinOpKind::Eq || op.node == hir::BinOpKind::Ne => { let mut info = BinaryExprInfo { expr, chain: lhs, other: rhs, eq: op.node == hir::BinOpKind::Eq, }; lint_binary_expr_with_method_call(cx, &mut info); }, _ => (), } } #[allow(clippy::too_many_lines)] fn check_impl_item(&mut self, cx: &LateContext<'tcx>, impl_item: &'tcx hir::ImplItem<'_>) { if in_external_macro(cx.sess(), impl_item.span) { return; } let name = impl_item.ident.name.as_str(); let parent = cx.tcx.hir().get_parent_item(impl_item.hir_id()); let item = cx.tcx.hir().expect_item(parent); let self_ty = cx.tcx.type_of(item.def_id); let implements_trait = matches!(item.kind, hir::ItemKind::Impl(hir::Impl { of_trait: Some(_), .. })); if_chain! { if let hir::ImplItemKind::Fn(ref sig, id) = impl_item.kind; if let Some(first_arg) = iter_input_pats(sig.decl, cx.tcx.hir().body(id)).next(); let method_sig = cx.tcx.fn_sig(impl_item.def_id); let method_sig = cx.tcx.erase_late_bound_regions(method_sig); let first_arg_ty = &method_sig.inputs().iter().next(); // check conventions w.r.t. conversion method names and predicates if let Some(first_arg_ty) = first_arg_ty; then { // if this impl block implements a trait, lint in trait definition instead if !implements_trait && cx.access_levels.is_exported(impl_item.hir_id()) { // check missing trait implementations for method_config in &TRAIT_METHODS { if name == method_config.method_name && sig.decl.inputs.len() == method_config.param_count && method_config.output_type.matches(&sig.decl.output) && method_config.self_kind.matches(cx, self_ty, first_arg_ty) && fn_header_equals(method_config.fn_header, sig.header) && method_config.lifetime_param_cond(impl_item) { span_lint_and_help( cx, SHOULD_IMPLEMENT_TRAIT, impl_item.span, &format!( "method `{}` can be confused for the standard trait method `{}::{}`", method_config.method_name, method_config.trait_name, method_config.method_name ), None, &format!( "consider implementing the trait `{}` or choosing a less ambiguous method name", method_config.trait_name ) ); } } } wrong_self_convention::check( cx, &name, item.vis.node.is_pub(), self_ty, first_arg_ty, first_arg.pat.span, implements_trait, false ); } } // if this impl block implements a trait, lint in trait definition instead if implements_trait { return; } if let hir::ImplItemKind::Fn(_, _) = impl_item.kind { let ret_ty = return_ty(cx, impl_item.hir_id()); // walk the return type and check for Self (this does not check associated types) if let Some(self_adt) = self_ty.ty_adt_def() { if contains_adt_constructor(ret_ty, self_adt) { return; } } else if contains_ty(ret_ty, self_ty) { return; } // if return type is impl trait, check the associated types if let ty::Opaque(def_id, _) = *ret_ty.kind() { // one of the associated types must be Self for &(predicate, _span) in cx.tcx.explicit_item_bounds(def_id) { if let ty::PredicateKind::Projection(projection_predicate) = predicate.kind().skip_binder() { // walk the associated type and check for Self if let Some(self_adt) = self_ty.ty_adt_def() { if contains_adt_constructor(projection_predicate.ty, self_adt) { return; } } else if contains_ty(projection_predicate.ty, self_ty) { return; } } } } if name == "new" && !TyS::same_type(ret_ty, self_ty) { span_lint( cx, NEW_RET_NO_SELF, impl_item.span, "methods called `new` usually return `Self`", ); } } } fn check_trait_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx TraitItem<'_>) { if in_external_macro(cx.tcx.sess, item.span) { return; } if_chain! { if let TraitItemKind::Fn(ref sig, _) = item.kind; if let Some(first_arg_ty) = sig.decl.inputs.iter().next(); then { let first_arg_span = first_arg_ty.span; let first_arg_ty = hir_ty_to_ty(cx.tcx, first_arg_ty); let self_ty = TraitRef::identity(cx.tcx, item.def_id.to_def_id()).self_ty(); wrong_self_convention::check( cx, &item.ident.name.as_str(), false, self_ty, first_arg_ty, first_arg_span, false, true ); } } if_chain! { if item.ident.name == sym::new; if let TraitItemKind::Fn(_, _) = item.kind; let ret_ty = return_ty(cx, item.hir_id()); let self_ty = TraitRef::identity(cx.tcx, item.def_id.to_def_id()).self_ty(); if !contains_ty(ret_ty, self_ty); then { span_lint( cx, NEW_RET_NO_SELF, item.span, "methods called `new` usually return `Self`", ); } } } extract_msrv_attr!(LateContext); } #[allow(clippy::too_many_lines)] fn check_methods<'tcx>(cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>, msrv: Option<&RustcVersion>) { if let Some((name, [recv, args @ ..], span)) = method_call!(expr) { match (name, args) { ("add" | "offset" | "sub" | "wrapping_offset" | "wrapping_add" | "wrapping_sub", [recv, _]) => { zst_offset::check(cx, expr, recv) }, ("and_then", [arg]) => { let biom_option_linted = bind_instead_of_map::OptionAndThenSome::check(cx, expr, recv, arg); let biom_result_linted = bind_instead_of_map::ResultAndThenOk::check(cx, expr, recv, arg); if !biom_option_linted && !biom_result_linted { unnecessary_lazy_eval::check(cx, expr, recv, arg, "and"); } }, ("as_mut", []) => useless_asref::check(cx, expr, "as_mut", recv), ("as_ref", []) => useless_asref::check(cx, expr, "as_ref", recv), ("assume_init", []) => uninit_assumed_init::check(cx, expr, recv), ("collect", []) => match method_call!(recv) { Some(("cloned", [recv2], _)) => iter_cloned_collect::check(cx, expr, recv2), Some(("map", [m_recv, m_arg], _)) => { map_collect_result_unit::check(cx, expr, m_recv, m_arg, recv); }, _ => {}, }, ("count", []) => match method_call!(recv) { Some((name @ ("into_iter" | "iter" | "iter_mut"), [recv2], _)) => { iter_count::check(cx, expr, recv2, name); }, Some(("map", [_, arg], _)) => suspicious_map::check(cx, expr, recv, arg), _ => {}, }, ("expect", [_]) => match method_call!(recv) { Some(("ok", [recv], _)) => ok_expect::check(cx, expr, recv), _ => expect_used::check(cx, expr, recv), }, ("extend", [arg]) => string_extend_chars::check(cx, expr, recv, arg), ("filter_map", [arg]) => { unnecessary_filter_map::check(cx, expr, arg); filter_map_identity::check(cx, expr, arg, span); }, ("flat_map", [flm_arg]) => match method_call!(recv) { Some(("filter", [_, _], _)) => filter_flat_map::check(cx, expr), Some(("filter_map", [_, _], _)) => filter_map_flat_map::check(cx, expr), _ => flat_map_identity::check(cx, expr, flm_arg, span), }, ("flatten", []) => { if let Some(("map", [recv, map_arg], _)) = method_call!(recv) { map_flatten::check(cx, expr, recv, map_arg); } }, ("fold", [init, acc]) => unnecessary_fold::check(cx, expr, init, acc, span), ("for_each", [_]) => { if let Some(("inspect", [_, _], span2)) = method_call!(recv) { inspect_for_each::check(cx, expr, span2); } }, ("get_or_insert_with", [arg]) => unnecessary_lazy_eval::check(cx, expr, recv, arg, "get_or_insert"), ("is_file", []) => filetype_is_file::check(cx, expr, recv), ("is_none", []) => check_is_some_is_none(cx, expr, recv, false), ("is_some", []) => check_is_some_is_none(cx, expr, recv, true), ("map", [m_arg]) => { if let Some((name, [recv2, args @ ..], span2)) = method_call!(recv) { match (name, args) { ("as_mut", []) => option_as_ref_deref::check(cx, expr, recv2, m_arg, true, msrv), ("as_ref", []) => option_as_ref_deref::check(cx, expr, recv2, m_arg, false, msrv), ("filter", [f_arg]) => { filter_map::check(cx, expr, recv2, f_arg, span2, recv, m_arg, span, false) }, ("filter_map", [_]) => filter_map_map::check(cx, expr), ("find", [f_arg]) => filter_map::check(cx, expr, recv2, f_arg, span2, recv, m_arg, span, true), _ => {}, } } }, ("map_or", [def, map]) => option_map_or_none::check(cx, expr, recv, def, map), ("next", []) => { if let Some((name, [recv, args @ ..], _)) = method_call!(recv) { match (name, args) { ("filter", [arg]) => filter_next::check(cx, expr, recv, arg), ("filter_map", [arg]) => filter_map_next::check(cx, expr, recv, arg, msrv), ("iter", []) => iter_next_slice::check(cx, expr, recv), ("skip", [arg]) => iter_skip_next::check(cx, expr, recv, arg), ("skip_while", [_]) => skip_while_next::check(cx, expr), _ => {}, } } }, ("nth", [n_arg]) => match method_call!(recv) { Some(("bytes", [recv2], _)) => bytes_nth::check(cx, expr, recv2, n_arg), Some(("iter", [recv2], _)) => iter_nth::check(cx, expr, recv2, recv, n_arg, false), Some(("iter_mut", [recv2], _)) => iter_nth::check(cx, expr, recv2, recv, n_arg, true), _ => iter_nth_zero::check(cx, expr, recv, n_arg), }, ("ok_or_else", [arg]) => unnecessary_lazy_eval::check(cx, expr, recv, arg, "ok_or"), ("or_else", [arg]) => { if !bind_instead_of_map::ResultOrElseErrInfo::check(cx, expr, recv, arg) { unnecessary_lazy_eval::check(cx, expr, recv, arg, "or"); } }, ("step_by", [arg]) => iterator_step_by_zero::check(cx, expr, arg), ("to_os_string", []) => implicit_clone::check(cx, expr, sym::OsStr), ("to_owned", []) => implicit_clone::check(cx, expr, sym::ToOwned), ("to_path_buf", []) => implicit_clone::check(cx, expr, sym::Path), ("to_vec", []) => implicit_clone::check(cx, expr, sym::slice), ("unwrap", []) => match method_call!(recv) { Some(("get", [recv, get_arg], _)) => get_unwrap::check(cx, expr, recv, get_arg, false), Some(("get_mut", [recv, get_arg], _)) => get_unwrap::check(cx, expr, recv, get_arg, true), _ => unwrap_used::check(cx, expr, recv), }, ("unwrap_or", [u_arg]) => match method_call!(recv) { Some((arith @ ("checked_add" | "checked_sub" | "checked_mul"), [lhs, rhs], _)) => { manual_saturating_arithmetic::check(cx, expr, lhs, rhs, u_arg, &arith["checked_".len()..]); }, Some(("map", [m_recv, m_arg], span)) => { option_map_unwrap_or::check(cx, expr, m_recv, m_arg, recv, u_arg, span) }, _ => {}, }, ("unwrap_or_else", [u_arg]) => match method_call!(recv) { Some(("map", [recv, map_arg], _)) if map_unwrap_or::check(cx, expr, recv, map_arg, u_arg, msrv) => {}, _ => unnecessary_lazy_eval::check(cx, expr, recv, u_arg, "unwrap_or"), }, _ => {}, } } } fn check_is_some_is_none(cx: &LateContext<'_>, expr: &Expr<'_>, recv: &Expr<'_>, is_some: bool) { if let Some((name @ ("find" | "position" | "rposition"), [f_recv, arg], span)) = method_call!(recv) { search_is_some::check(cx, expr, name, is_some, f_recv, arg, recv, span) } } /// Used for `lint_binary_expr_with_method_call`. #[derive(Copy, Clone)] struct BinaryExprInfo<'a> { expr: &'a hir::Expr<'a>, chain: &'a hir::Expr<'a>, other: &'a hir::Expr<'a>, eq: bool, } /// Checks for the `CHARS_NEXT_CMP` and `CHARS_LAST_CMP` lints. fn lint_binary_expr_with_method_call(cx: &LateContext<'_>, info: &mut BinaryExprInfo<'_>) { macro_rules! lint_with_both_lhs_and_rhs { ($func:expr, $cx:expr, $info:ident) => { if !$func($cx, $info) { ::std::mem::swap(&mut $info.chain, &mut $info.other); if $func($cx, $info) { return; } } }; } lint_with_both_lhs_and_rhs!(chars_next_cmp::check, cx, info); lint_with_both_lhs_and_rhs!(chars_last_cmp::check, cx, info); lint_with_both_lhs_and_rhs!(chars_next_cmp_with_unwrap::check, cx, info); lint_with_both_lhs_and_rhs!(chars_last_cmp_with_unwrap::check, cx, info); } const FN_HEADER: hir::FnHeader = hir::FnHeader { unsafety: hir::Unsafety::Normal, constness: hir::Constness::NotConst, asyncness: hir::IsAsync::NotAsync, abi: rustc_target::spec::abi::Abi::Rust, }; struct ShouldImplTraitCase { trait_name: &'static str, method_name: &'static str, param_count: usize, fn_header: hir::FnHeader, // implicit self kind expected (none, self, &self, ...) self_kind: SelfKind, // checks against the output type output_type: OutType, // certain methods with explicit lifetimes can't implement the equivalent trait method lint_explicit_lifetime: bool, } impl ShouldImplTraitCase { const fn new( trait_name: &'static str, method_name: &'static str, param_count: usize, fn_header: hir::FnHeader, self_kind: SelfKind, output_type: OutType, lint_explicit_lifetime: bool, ) -> ShouldImplTraitCase { ShouldImplTraitCase { trait_name, method_name, param_count, fn_header, self_kind, output_type, lint_explicit_lifetime, } } fn lifetime_param_cond(&self, impl_item: &hir::ImplItem<'_>) -> bool { self.lint_explicit_lifetime || !impl_item.generics.params.iter().any(|p| { matches!( p.kind, hir::GenericParamKind::Lifetime { kind: hir::LifetimeParamKind::Explicit } ) }) } } #[rustfmt::skip] const TRAIT_METHODS: [ShouldImplTraitCase; 30] = [ ShouldImplTraitCase::new("std::ops::Add", "add", 2, FN_HEADER, SelfKind::Value, OutType::Any, true), ShouldImplTraitCase::new("std::convert::AsMut", "as_mut", 1, FN_HEADER, SelfKind::RefMut, OutType::Ref, true), ShouldImplTraitCase::new("std::convert::AsRef", "as_ref", 1, FN_HEADER, SelfKind::Ref, OutType::Ref, true), ShouldImplTraitCase::new("std::ops::BitAnd", "bitand", 2, FN_HEADER, SelfKind::Value, OutType::Any, true), ShouldImplTraitCase::new("std::ops::BitOr", "bitor", 2, FN_HEADER, SelfKind::Value, OutType::Any, true), ShouldImplTraitCase::new("std::ops::BitXor", "bitxor", 2, FN_HEADER, SelfKind::Value, OutType::Any, true), ShouldImplTraitCase::new("std::borrow::Borrow", "borrow", 1, FN_HEADER, SelfKind::Ref, OutType::Ref, true), ShouldImplTraitCase::new("std::borrow::BorrowMut", "borrow_mut", 1, FN_HEADER, SelfKind::RefMut, OutType::Ref, true), ShouldImplTraitCase::new("std::clone::Clone", "clone", 1, FN_HEADER, SelfKind::Ref, OutType::Any, true), ShouldImplTraitCase::new("std::cmp::Ord", "cmp", 2, FN_HEADER, SelfKind::Ref, OutType::Any, true), // FIXME: default doesn't work ShouldImplTraitCase::new("std::default::Default", "default", 0, FN_HEADER, SelfKind::No, OutType::Any, true), ShouldImplTraitCase::new("std::ops::Deref", "deref", 1, FN_HEADER, SelfKind::Ref, OutType::Ref, true), ShouldImplTraitCase::new("std::ops::DerefMut", "deref_mut", 1, FN_HEADER, SelfKind::RefMut, OutType::Ref, true), ShouldImplTraitCase::new("std::ops::Div", "div", 2, FN_HEADER, SelfKind::Value, OutType::Any, true), ShouldImplTraitCase::new("std::ops::Drop", "drop", 1, FN_HEADER, SelfKind::RefMut, OutType::Unit, true), ShouldImplTraitCase::new("std::cmp::PartialEq", "eq", 2, FN_HEADER, SelfKind::Ref, OutType::Bool, true), ShouldImplTraitCase::new("std::iter::FromIterator", "from_iter", 1, FN_HEADER, SelfKind::No, OutType::Any, true), ShouldImplTraitCase::new("std::str::FromStr", "from_str", 1, FN_HEADER, SelfKind::No, OutType::Any, true), ShouldImplTraitCase::new("std::hash::Hash", "hash", 2, FN_HEADER, SelfKind::Ref, OutType::Unit, true), ShouldImplTraitCase::new("std::ops::Index", "index", 2, FN_HEADER, SelfKind::Ref, OutType::Ref, true), ShouldImplTraitCase::new("std::ops::IndexMut", "index_mut", 2, FN_HEADER, SelfKind::RefMut, OutType::Ref, true), ShouldImplTraitCase::new("std::iter::IntoIterator", "into_iter", 1, FN_HEADER, SelfKind::Value, OutType::Any, true), ShouldImplTraitCase::new("std::ops::Mul", "mul", 2, FN_HEADER, SelfKind::Value, OutType::Any, true), ShouldImplTraitCase::new("std::ops::Neg", "neg", 1, FN_HEADER, SelfKind::Value, OutType::Any, true), ShouldImplTraitCase::new("std::iter::Iterator", "next", 1, FN_HEADER, SelfKind::RefMut, OutType::Any, false), ShouldImplTraitCase::new("std::ops::Not", "not", 1, FN_HEADER, SelfKind::Value, OutType::Any, true), ShouldImplTraitCase::new("std::ops::Rem", "rem", 2, FN_HEADER, SelfKind::Value, OutType::Any, true), ShouldImplTraitCase::new("std::ops::Shl", "shl", 2, FN_HEADER, SelfKind::Value, OutType::Any, true), ShouldImplTraitCase::new("std::ops::Shr", "shr", 2, FN_HEADER, SelfKind::Value, OutType::Any, true), ShouldImplTraitCase::new("std::ops::Sub", "sub", 2, FN_HEADER, SelfKind::Value, OutType::Any, true), ]; #[rustfmt::skip] const PATTERN_METHODS: [(&str, usize); 17] = [ ("contains", 1), ("starts_with", 1), ("ends_with", 1), ("find", 1), ("rfind", 1), ("split", 1), ("rsplit", 1), ("split_terminator", 1), ("rsplit_terminator", 1), ("splitn", 2), ("rsplitn", 2), ("matches", 1), ("rmatches", 1), ("match_indices", 1), ("rmatch_indices", 1), ("trim_start_matches", 1), ("trim_end_matches", 1), ]; #[derive(Clone, Copy, PartialEq, Debug)] enum SelfKind { Value, Ref, RefMut, No, } impl SelfKind { fn matches<'a>(self, cx: &LateContext<'a>, parent_ty: Ty<'a>, ty: Ty<'a>) -> bool { fn matches_value<'a>(cx: &LateContext<'a>, parent_ty: Ty<'_>, ty: Ty<'_>) -> bool { if ty == parent_ty { true } else if ty.is_box() { ty.boxed_ty() == parent_ty } else if is_type_diagnostic_item(cx, ty, sym::Rc) || is_type_diagnostic_item(cx, ty, sym::Arc) { if let ty::Adt(_, substs) = ty.kind() { substs.types().next().map_or(false, |t| t == parent_ty) } else { false } } else { false } } fn matches_ref<'a>(cx: &LateContext<'a>, mutability: hir::Mutability, parent_ty: Ty<'a>, ty: Ty<'a>) -> bool { if let ty::Ref(_, t, m) = *ty.kind() { return m == mutability && t == parent_ty; } let trait_path = match mutability { hir::Mutability::Not => &paths::ASREF_TRAIT, hir::Mutability::Mut => &paths::ASMUT_TRAIT, }; let trait_def_id = match get_trait_def_id(cx, trait_path) { Some(did) => did, None => return false, }; implements_trait(cx, ty, trait_def_id, &[parent_ty.into()]) } match self { Self::Value => matches_value(cx, parent_ty, ty), Self::Ref => matches_ref(cx, hir::Mutability::Not, parent_ty, ty) || ty == parent_ty && is_copy(cx, ty), Self::RefMut => matches_ref(cx, hir::Mutability::Mut, parent_ty, ty), Self::No => ty != parent_ty, } } #[must_use] fn description(self) -> &'static str { match self { Self::Value => "`self` by value", Self::Ref => "`self` by reference", Self::RefMut => "`self` by mutable reference", Self::No => "no `self`", } } } #[derive(Clone, Copy)] enum OutType { Unit, Bool, Any, Ref, } impl OutType { fn matches(self, ty: &hir::FnRetTy<'_>) -> bool { let is_unit = |ty: &hir::Ty<'_>| matches!(ty.kind, hir::TyKind::Tup(&[])); match (self, ty) { (Self::Unit, &hir::FnRetTy::DefaultReturn(_)) => true, (Self::Unit, &hir::FnRetTy::Return(ty)) if is_unit(ty) => true, (Self::Bool, &hir::FnRetTy::Return(ty)) if is_bool(ty) => true, (Self::Any, &hir::FnRetTy::Return(ty)) if !is_unit(ty) => true, (Self::Ref, &hir::FnRetTy::Return(ty)) => matches!(ty.kind, hir::TyKind::Rptr(_, _)), _ => false, } } } fn is_bool(ty: &hir::Ty<'_>) -> bool { if let hir::TyKind::Path(QPath::Resolved(_, path)) = ty.kind { matches!(path.res, Res::PrimTy(PrimTy::Bool)) } else { false } } fn fn_header_equals(expected: hir::FnHeader, actual: hir::FnHeader) -> bool { expected.constness == actual.constness && expected.unsafety == actual.unsafety && expected.asyncness == actual.asyncness }