use if_chain::if_chain; use rustc::hir::*; use rustc::lint::{LateContext, LateLintPass, LintArray, LintPass}; use rustc::{declare_lint_pass, declare_tool_lint}; use rustc_errors::Applicability; use syntax::ast::RangeLimits; use syntax::source_map::Spanned; use crate::utils::sugg::Sugg; use crate::utils::{get_trait_def_id, higher, implements_trait, SpanlessEq}; use crate::utils::{is_integer_literal, paths, snippet, snippet_opt, span_lint, span_lint_and_then}; declare_clippy_lint! { /// **What it does:** Checks for calling `.step_by(0)` on iterators, /// which never terminates. /// /// **Why is this bad?** This very much looks like an oversight, since with /// `loop { .. }` there is an obvious better way to endlessly loop. /// /// **Known problems:** None. /// /// **Example:** /// ```ignore /// for x in (5..5).step_by(0) { /// .. /// } /// ``` pub ITERATOR_STEP_BY_ZERO, correctness, "using `Iterator::step_by(0)`, which produces an infinite iterator" } declare_clippy_lint! { /// **What it does:** Checks for zipping a collection with the range of /// `0.._.len()`. /// /// **Why is this bad?** The code is better expressed with `.enumerate()`. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// # let x = vec![1]; /// x.iter().zip(0..x.len()); /// ``` pub RANGE_ZIP_WITH_LEN, complexity, "zipping iterator with a range when `enumerate()` would do" } declare_clippy_lint! { /// **What it does:** Checks for exclusive ranges where 1 is added to the /// upper bound, e.g., `x..(y+1)`. /// /// **Why is this bad?** The code is more readable with an inclusive range /// like `x..=y`. /// /// **Known problems:** Will add unnecessary pair of parentheses when the /// expression is not wrapped in a pair but starts with a opening parenthesis /// and ends with a closing one. /// I.e., `let _ = (f()+1)..(f()+1)` results in `let _ = ((f()+1)..=f())`. /// /// **Example:** /// ```rust,ignore /// for x..(y+1) { .. } /// ``` pub RANGE_PLUS_ONE, complexity, "`x..(y+1)` reads better as `x..=y`" } declare_clippy_lint! { /// **What it does:** Checks for inclusive ranges where 1 is subtracted from /// the upper bound, e.g., `x..=(y-1)`. /// /// **Why is this bad?** The code is more readable with an exclusive range /// like `x..y`. /// /// **Known problems:** None. /// /// **Example:** /// ```rust,ignore /// for x..=(y-1) { .. } /// ``` pub RANGE_MINUS_ONE, complexity, "`x..=(y-1)` reads better as `x..y`" } declare_lint_pass!(Ranges => [ ITERATOR_STEP_BY_ZERO, RANGE_ZIP_WITH_LEN, RANGE_PLUS_ONE, RANGE_MINUS_ONE ]); impl<'a, 'tcx> LateLintPass<'a, 'tcx> for Ranges { fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, expr: &'tcx Expr) { if let ExprKind::MethodCall(ref path, _, ref args) = expr.node { let name = path.ident.as_str(); // Range with step_by(0). if name == "step_by" && args.len() == 2 && has_step_by(cx, &args[0]) { use crate::consts::{constant, Constant}; if let Some((Constant::Int(0), _)) = constant(cx, cx.tables, &args[1]) { span_lint( cx, ITERATOR_STEP_BY_ZERO, expr.span, "Iterator::step_by(0) will panic at runtime", ); } } else if name == "zip" && args.len() == 2 { let iter = &args[0].node; let zip_arg = &args[1]; if_chain! { // `.iter()` call if let ExprKind::MethodCall(ref iter_path, _, ref iter_args ) = *iter; if iter_path.ident.name == sym!(iter); // range expression in `.zip()` call: `0..x.len()` if let Some(higher::Range { start: Some(start), end: Some(end), .. }) = higher::range(cx, zip_arg); if is_integer_literal(start, 0); // `.len()` call if let ExprKind::MethodCall(ref len_path, _, ref len_args) = end.node; if len_path.ident.name == sym!(len) && len_args.len() == 1; // `.iter()` and `.len()` called on same `Path` if let ExprKind::Path(QPath::Resolved(_, ref iter_path)) = iter_args[0].node; if let ExprKind::Path(QPath::Resolved(_, ref len_path)) = len_args[0].node; if SpanlessEq::new(cx).eq_path_segments(&iter_path.segments, &len_path.segments); then { span_lint(cx, RANGE_ZIP_WITH_LEN, expr.span, &format!("It is more idiomatic to use {}.iter().enumerate()", snippet(cx, iter_args[0].span, "_"))); } } } } // exclusive range plus one: `x..(y+1)` if_chain! { if let Some(higher::Range { start, end: Some(end), limits: RangeLimits::HalfOpen }) = higher::range(cx, expr); if let Some(y) = y_plus_one(end); then { let span = if expr.span.from_expansion() { expr.span .ctxt() .outer_expn_data() .call_site } else { expr.span }; span_lint_and_then( cx, RANGE_PLUS_ONE, span, "an inclusive range would be more readable", |db| { let start = start.map_or(String::new(), |x| Sugg::hir(cx, x, "x").to_string()); let end = Sugg::hir(cx, y, "y"); if let Some(is_wrapped) = &snippet_opt(cx, span) { if is_wrapped.starts_with('(') && is_wrapped.ends_with(')') { db.span_suggestion( span, "use", format!("({}..={})", start, end), Applicability::MaybeIncorrect, ); } else { db.span_suggestion( span, "use", format!("{}..={}", start, end), Applicability::MachineApplicable, // snippet ); } } }, ); } } // inclusive range minus one: `x..=(y-1)` if_chain! { if let Some(higher::Range { start, end: Some(end), limits: RangeLimits::Closed }) = higher::range(cx, expr); if let Some(y) = y_minus_one(end); then { span_lint_and_then( cx, RANGE_MINUS_ONE, expr.span, "an exclusive range would be more readable", |db| { let start = start.map_or(String::new(), |x| Sugg::hir(cx, x, "x").to_string()); let end = Sugg::hir(cx, y, "y"); db.span_suggestion( expr.span, "use", format!("{}..{}", start, end), Applicability::MachineApplicable, // snippet ); }, ); } } } } fn has_step_by(cx: &LateContext<'_, '_>, expr: &Expr) -> bool { // No need for `walk_ptrs_ty` here because `step_by` moves `self`, so it // can't be called on a borrowed range. let ty = cx.tables.expr_ty_adjusted(expr); get_trait_def_id(cx, &paths::ITERATOR).map_or(false, |iterator_trait| implements_trait(cx, ty, iterator_trait, &[])) } fn y_plus_one(expr: &Expr) -> Option<&Expr> { match expr.node { ExprKind::Binary( Spanned { node: BinOpKind::Add, .. }, ref lhs, ref rhs, ) => { if is_integer_literal(lhs, 1) { Some(rhs) } else if is_integer_literal(rhs, 1) { Some(lhs) } else { None } }, _ => None, } } fn y_minus_one(expr: &Expr) -> Option<&Expr> { match expr.node { ExprKind::Binary( Spanned { node: BinOpKind::Sub, .. }, ref lhs, ref rhs, ) if is_integer_literal(rhs, 1) => Some(lhs), _ => None, } }