// Copyright 2014-2018 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use crate::utils::span_lint_and_sugg; use if_chain::if_chain; use rustc::hir::def::{CtorKind, Def}; use rustc::hir::intravisit::{walk_path, walk_ty, NestedVisitorMap, Visitor}; use rustc::hir::*; use rustc::lint::{in_external_macro, LateContext, LateLintPass, LintArray, LintContext, LintPass}; use rustc::ty; use rustc::{declare_tool_lint, lint_array}; use rustc_errors::Applicability; use syntax::ast::NodeId; use syntax_pos::symbol::keywords::SelfUpper; /// **What it does:** Checks for unnecessary repetition of structure name when a /// replacement with `Self` is applicable. /// /// **Why is this bad?** Unnecessary repetition. Mixed use of `Self` and struct /// name /// feels inconsistent. /// /// **Known problems:** /// - False positive when using associated types (#2843) /// - False positives in some situations when using generics (#3410) /// - False positive when type from outer function can't be used (#3463) /// /// **Example:** /// ```rust /// struct Foo {} /// impl Foo { /// fn new() -> Foo { /// Foo {} /// } /// } /// ``` /// could be /// ```rust /// struct Foo {} /// impl Foo { /// fn new() -> Self { /// Self {} /// } /// } /// ``` declare_clippy_lint! { pub USE_SELF, pedantic, "Unnecessary structure name repetition whereas `Self` is applicable" } #[derive(Copy, Clone, Default)] pub struct UseSelf; impl LintPass for UseSelf { fn get_lints(&self) -> LintArray { lint_array!(USE_SELF) } } const SEGMENTS_MSG: &str = "segments should be composed of at least 1 element"; fn span_use_self_lint(cx: &LateContext<'_, '_>, path: &Path) { span_lint_and_sugg( cx, USE_SELF, path.span, "unnecessary structure name repetition", "use the applicable keyword", "Self".to_owned(), Applicability::MachineApplicable, ); } struct TraitImplTyVisitor<'a, 'tcx: 'a> { item_type: ty::Ty<'tcx>, cx: &'a LateContext<'a, 'tcx>, trait_type_walker: ty::walk::TypeWalker<'tcx>, impl_type_walker: ty::walk::TypeWalker<'tcx>, } impl<'a, 'tcx> Visitor<'tcx> for TraitImplTyVisitor<'a, 'tcx> { fn visit_ty(&mut self, t: &'tcx Ty) { let trait_ty = self.trait_type_walker.next(); let impl_ty = self.impl_type_walker.next(); if let TyKind::Path(QPath::Resolved(_, path)) = &t.node { // The implementation and trait types don't match which means that // the concrete type was specified by the implementation if impl_ty != trait_ty { if let Some(impl_ty) = impl_ty { if self.item_type == impl_ty { let is_self_ty = if let def::Def::SelfTy(..) = path.def { true } else { false }; if !is_self_ty { span_use_self_lint(self.cx, path); } } } } } walk_ty(self, t) } fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> { NestedVisitorMap::None } } fn check_trait_method_impl_decl<'a, 'tcx: 'a>( cx: &'a LateContext<'a, 'tcx>, item_type: ty::Ty<'tcx>, impl_item: &ImplItem, impl_decl: &'tcx FnDecl, impl_trait_ref: &ty::TraitRef<'_>, ) { let trait_method = cx .tcx .associated_items(impl_trait_ref.def_id) .find(|assoc_item| { assoc_item.kind == ty::AssociatedKind::Method && cx .tcx .hygienic_eq(impl_item.ident, assoc_item.ident, impl_trait_ref.def_id) }) .expect("impl method matches a trait method"); let trait_method_sig = cx.tcx.fn_sig(trait_method.def_id); let trait_method_sig = cx.tcx.erase_late_bound_regions(&trait_method_sig); let impl_method_def_id = cx.tcx.hir().local_def_id(impl_item.id); let impl_method_sig = cx.tcx.fn_sig(impl_method_def_id); let impl_method_sig = cx.tcx.erase_late_bound_regions(&impl_method_sig); let output_ty = if let FunctionRetTy::Return(ty) = &impl_decl.output { Some(&**ty) } else { None }; // `impl_decl_ty` (of type `hir::Ty`) represents the type declared in the signature. // `impl_ty` (of type `ty:TyS`) is the concrete type that the compiler has determined for // that declaration. We use `impl_decl_ty` to see if the type was declared as `Self` // and use `impl_ty` to check its concrete type. for (impl_decl_ty, (impl_ty, trait_ty)) in impl_decl.inputs.iter().chain(output_ty).zip( impl_method_sig .inputs_and_output .iter() .zip(trait_method_sig.inputs_and_output), ) { let mut visitor = TraitImplTyVisitor { cx, item_type, trait_type_walker: trait_ty.walk(), impl_type_walker: impl_ty.walk(), }; visitor.visit_ty(&impl_decl_ty); } } impl<'a, 'tcx> LateLintPass<'a, 'tcx> for UseSelf { fn check_item(&mut self, cx: &LateContext<'a, 'tcx>, item: &'tcx Item) { if in_external_macro(cx.sess(), item.span) { return; } if_chain! { if let ItemKind::Impl(.., ref item_type, ref refs) = item.node; if let TyKind::Path(QPath::Resolved(_, ref item_path)) = item_type.node; then { let parameters = &item_path.segments.last().expect(SEGMENTS_MSG).args; let should_check = if let Some(ref params) = *parameters { !params.parenthesized && !params.args.iter().any(|arg| match arg { GenericArg::Lifetime(_) => true, GenericArg::Type(_) => false, }) } else { true }; if should_check { let visitor = &mut UseSelfVisitor { item_path, cx, }; let impl_def_id = cx.tcx.hir().local_def_id(item.id); let impl_trait_ref = cx.tcx.impl_trait_ref(impl_def_id); if let Some(impl_trait_ref) = impl_trait_ref { for impl_item_ref in refs { let impl_item = cx.tcx.hir().impl_item(impl_item_ref.id); if let ImplItemKind::Method(MethodSig{ decl: impl_decl, .. }, impl_body_id) = &impl_item.node { let item_type = cx.tcx.type_of(impl_def_id); check_trait_method_impl_decl(cx, item_type, impl_item, impl_decl, &impl_trait_ref); let body = cx.tcx.hir().body(*impl_body_id); visitor.visit_body(body); } else { visitor.visit_impl_item(impl_item); } } } else { for impl_item_ref in refs { let impl_item = cx.tcx.hir().impl_item(impl_item_ref.id); visitor.visit_impl_item(impl_item); } } } } } } } struct UseSelfVisitor<'a, 'tcx: 'a> { item_path: &'a Path, cx: &'a LateContext<'a, 'tcx>, } impl<'a, 'tcx> Visitor<'tcx> for UseSelfVisitor<'a, 'tcx> { fn visit_path(&mut self, path: &'tcx Path, _id: HirId) { if path.segments.last().expect(SEGMENTS_MSG).ident.name != SelfUpper.name() { if self.item_path.def == path.def { span_use_self_lint(self.cx, path); } else if let Def::StructCtor(ctor_did, CtorKind::Fn) = path.def { if self.item_path.def.opt_def_id() == self.cx.tcx.parent_def_id(ctor_did) { span_use_self_lint(self.cx, path); } } } walk_path(self, path); } fn visit_use(&mut self, _path: &'tcx Path, _id: NodeId, _hir_id: HirId) { // Don't check use statements } fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> { NestedVisitorMap::All(&self.cx.tcx.hir()) } }