use rustc::lint::*; use rustc::middle::const_val::ConstVal; use rustc::ty; use rustc_const_eval::ConstContext; use rustc_const_math::{ConstUsize,ConstInt}; use rustc::hir; use syntax::ast::RangeLimits; use utils::{self, higher}; /// **What it does:** Checks for out of bounds array indexing with a constant index. /// /// **Why is this bad?** This will always panic at runtime. /// /// **Known problems:** Hopefully none. /// /// **Example:** /// ```rust /// let x = [1,2,3,4]; /// ... /// x[9]; /// &x[2..9]; /// ``` declare_lint! { pub OUT_OF_BOUNDS_INDEXING, Deny, "out of bounds constant indexing" } /// **What it does:** Checks for usage of indexing or slicing. /// /// **Why is this bad?** Usually, this can be safely allowed. However, in some /// domains such as kernel development, a panic can cause the whole operating /// system to crash. /// /// **Known problems:** Hopefully none. /// /// **Example:** /// ```rust /// ... /// x[2]; /// &x[0..2]; /// ``` declare_restriction_lint! { pub INDEXING_SLICING, "indexing/slicing usage" } #[derive(Copy,Clone)] pub struct ArrayIndexing; impl LintPass for ArrayIndexing { fn get_lints(&self) -> LintArray { lint_array!(INDEXING_SLICING, OUT_OF_BOUNDS_INDEXING) } } impl<'a, 'tcx> LateLintPass<'a, 'tcx> for ArrayIndexing { fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, e: &'tcx hir::Expr) { if let hir::ExprIndex(ref array, ref index) = e.node { // Array with known size can be checked statically let ty = cx.tables.expr_ty(array); if let ty::TyArray(_, size) = ty.sty { let size = ConstInt::Usize(ConstUsize::new(size as u64, cx.sess().target.uint_type).expect("array size is invalid")); let constcx = ConstContext::with_tables(cx.tcx, cx.tables); // Index is a constant uint let const_index = constcx.eval(index); if let Ok(ConstVal::Integral(const_index)) = const_index { if size <= const_index { utils::span_lint(cx, OUT_OF_BOUNDS_INDEXING, e.span, "const index is out of bounds"); } return; } // Index is a constant range if let Some(range) = higher::range(index) { let start = range.start .map(|start| constcx.eval(start)) .map(|v| v.ok()); let end = range.end .map(|end| constcx.eval(end)) .map(|v| v.ok()); if let Some((start, end)) = to_const_range(&start, &end, range.limits, size) { if start > size || end > size { utils::span_lint(cx, OUT_OF_BOUNDS_INDEXING, e.span, "range is out of bounds"); } return; } } } if let Some(range) = higher::range(index) { // Full ranges are always valid if range.start.is_none() && range.end.is_none() { return; } // Impossible to know if indexing or slicing is correct utils::span_lint(cx, INDEXING_SLICING, e.span, "slicing may panic"); } else { utils::span_lint(cx, INDEXING_SLICING, e.span, "indexing may panic"); } } } } /// Returns an option containing a tuple with the start and end (exclusive) of the range. fn to_const_range( start: &Option>, end: &Option>, limits: RangeLimits, array_size: ConstInt ) -> Option<(ConstInt, ConstInt)> { let start = match *start { Some(Some(ConstVal::Integral(x))) => x, Some(_) => return None, None => ConstInt::U8(0), }; let end = match *end { Some(Some(ConstVal::Integral(x))) => { if limits == RangeLimits::Closed { (x + ConstInt::U8(1)).expect("such a big array is not realistic") } else { x } }, Some(_) => return None, None => array_size, }; Some((start, end)) }