use crate::utils; use crate::utils::snippet_opt; use crate::utils::span_lint_and_sugg; use if_chain::if_chain; use rustc_errors::Applicability; use rustc_hir as hir; use rustc_hir::def::DefKind; use rustc_hir::intravisit::{walk_expr, walk_impl_item, walk_ty, NestedVisitorMap, Visitor}; use rustc_hir::{ def, Expr, ExprKind, FnDecl, FnRetTy, FnSig, GenericArg, ImplItem, ImplItemKind, ItemKind, Node, Path, PathSegment, QPath, TyKind, }; use rustc_lint::{LateContext, LateLintPass, LintContext}; use rustc_middle::hir::map::Map; use rustc_middle::lint::in_external_macro; use rustc_middle::ty; use rustc_middle::ty::Ty; use rustc_session::{declare_lint_pass, declare_tool_lint}; use rustc_span::{BytePos, Span}; use rustc_typeck::hir_ty_to_ty; declare_clippy_lint! { /// **What it does:** Checks for unnecessary repetition of structure name when a /// replacement with `Self` is applicable. /// /// **Why is this bad?** Unnecessary repetition. Mixed use of `Self` and struct /// name /// feels inconsistent. /// /// **Known problems:** /// Unaddressed false negatives related to unresolved internal compiler errors. /// /// **Example:** /// ```rust /// struct Foo {} /// impl Foo { /// fn new() -> Foo { /// Foo {} /// } /// } /// ``` /// could be /// ```rust /// struct Foo {} /// impl Foo { /// fn new() -> Self { /// Self {} /// } /// } /// ``` pub USE_SELF, nursery, "unnecessary structure name repetition whereas `Self` is applicable" } declare_lint_pass!(UseSelf => [USE_SELF]); const SEGMENTS_MSG: &str = "segments should be composed of at least 1 element"; fn span_lint<'tcx>(cx: &LateContext<'tcx>, span: Span) { span_lint_and_sugg( cx, USE_SELF, span, "unnecessary structure name repetition", "use the applicable keyword", "Self".to_owned(), Applicability::MachineApplicable, ); } #[allow(clippy::cast_possible_truncation)] fn span_lint_until_last_segment<'tcx>(cx: &LateContext<'tcx>, span: Span, segment: &'tcx PathSegment<'tcx>) { let sp = span.with_hi(segment.ident.span.lo()); // remove the trailing :: let span_without_last_segment = match snippet_opt(cx, sp) { Some(snippet) => match snippet.rfind("::") { Some(bidx) => sp.with_hi(sp.lo() + BytePos(bidx as u32)), None => sp, }, None => sp, }; span_lint(cx, span_without_last_segment); } fn span_lint_on_path_until_last_segment<'tcx>(cx: &LateContext<'tcx>, path: &'tcx Path<'tcx>) { if path.segments.len() > 1 { span_lint_until_last_segment(cx, path.span, path.segments.last().unwrap()); } } fn span_lint_on_qpath_resolved<'tcx>(cx: &LateContext<'tcx>, qpath: &'tcx QPath<'tcx>, until_last_segment: bool) { if let QPath::Resolved(_, path) = qpath { if until_last_segment { span_lint_on_path_until_last_segment(cx, path); } else { span_lint(cx, path.span); } } } struct ImplVisitor<'a, 'tcx> { cx: &'a LateContext<'tcx>, self_ty: Ty<'tcx>, } impl<'a, 'tcx> ImplVisitor<'a, 'tcx> { fn check_trait_method_impl_decl( &mut self, impl_item: &ImplItem<'tcx>, impl_decl: &'tcx FnDecl<'tcx>, impl_trait_ref: ty::TraitRef<'tcx>, ) { let tcx = self.cx.tcx; let trait_method = tcx .associated_items(impl_trait_ref.def_id) .find_by_name_and_kind(tcx, impl_item.ident, ty::AssocKind::Fn, impl_trait_ref.def_id) .expect("impl method matches a trait method"); let trait_method_sig = tcx.fn_sig(trait_method.def_id); let trait_method_sig = tcx.erase_late_bound_regions(&trait_method_sig); let output_hir_ty = if let FnRetTy::Return(ty) = &impl_decl.output { Some(&**ty) } else { None }; // `impl_hir_ty` (of type `hir::Ty`) represents the type written in the signature. // `trait_ty` (of type `ty::Ty`) is the semantic type for the signature in the trait. // We use `impl_hir_ty` to see if the type was written as `Self`, // `hir_ty_to_ty(...)` to check semantic types of paths, and // `trait_ty` to determine which parts of the signature in the trait, mention // the type being implemented verbatim (as opposed to `Self`). for (impl_hir_ty, trait_ty) in impl_decl .inputs .iter() .chain(output_hir_ty) .zip(trait_method_sig.inputs_and_output) { // Check if the input/output type in the trait method specifies the implemented // type verbatim, and only suggest `Self` if that isn't the case. // This avoids suggestions to e.g. replace `Vec` with `Vec`, // in an `impl Trait for u8`, when the trait always uses `Vec`. // See also https://github.com/rust-lang/rust-clippy/issues/2894. let self_ty = impl_trait_ref.self_ty(); if !trait_ty.walk().any(|inner| inner == self_ty.into()) { self.visit_ty(&impl_hir_ty); } } } } impl<'a, 'tcx> Visitor<'tcx> for ImplVisitor<'a, 'tcx> { type Map = Map<'tcx>; fn nested_visit_map(&mut self) -> NestedVisitorMap { NestedVisitorMap::OnlyBodies(self.cx.tcx.hir()) } fn visit_ty(&mut self, hir_ty: &'tcx hir::Ty<'tcx>) { if let TyKind::Path(QPath::Resolved(_, path)) = hir_ty.kind { match path.res { def::Res::SelfTy(..) => {}, _ => { match self.cx.tcx.hir().find(self.cx.tcx.hir().get_parent_node(hir_ty.hir_id)) { Some(Node::Expr(Expr { kind: ExprKind::Path(QPath::TypeRelative(_, _segment)), .. })) => { // The following block correctly identifies applicable lint locations // but `hir_ty_to_ty` calls cause odd ICEs. // // if hir_ty_to_ty(self.cx.tcx, hir_ty) == self.self_ty { // // FIXME: this span manipulation should not be necessary // // @flip1995 found an ast lowering issue in // // https://github.com/rust-lang/rust/blob/master/src/librustc_ast_lowering/path.rs#L142-L162 // span_lint_until_last_segment(self.cx, hir_ty.span, segment); // } }, _ => { if hir_ty_to_ty(self.cx.tcx, hir_ty) == self.self_ty { span_lint(self.cx, hir_ty.span) } }, } }, } } walk_ty(self, hir_ty); } fn visit_expr(&mut self, expr: &'tcx Expr<'tcx>) { fn expr_ty_matches<'tcx>(expr: &'tcx Expr<'tcx>, self_ty: Ty<'tcx>, cx: &LateContext<'tcx>) -> bool { let def_id = expr.hir_id.owner; if cx.tcx.has_typeck_results(def_id) { cx.tcx.typeck(def_id).expr_ty_opt(expr) == Some(self_ty) } else { false } } match expr.kind { ExprKind::Struct(QPath::Resolved(_, path), ..) => { if expr_ty_matches(expr, self.self_ty, self.cx) { match path.res { def::Res::SelfTy(..) => (), def::Res::Def(DefKind::Variant, _) => span_lint_on_path_until_last_segment(self.cx, path), _ => { span_lint(self.cx, path.span); }, } } }, // tuple struct instantiation (`Foo(arg)` or `Enum::Foo(arg)`) ExprKind::Call(fun, _) => { if let Expr { kind: ExprKind::Path(ref qpath), .. } = fun { if expr_ty_matches(expr, self.self_ty, self.cx) { let res = utils::qpath_res(self.cx, qpath, fun.hir_id); if let def::Res::Def(DefKind::Ctor(ctor_of, _), ..) = res { match ctor_of { def::CtorOf::Variant => { span_lint_on_qpath_resolved(self.cx, qpath, true); }, def::CtorOf::Struct => { span_lint_on_qpath_resolved(self.cx, qpath, false); }, } } } } }, // unit enum variants (`Enum::A`) ExprKind::Path(ref qpath) => { if expr_ty_matches(expr, self.self_ty, self.cx) { span_lint_on_qpath_resolved(self.cx, qpath, true); } }, _ => (), } walk_expr(self, expr); } } impl<'tcx> LateLintPass<'tcx> for UseSelf { fn check_impl_item(&mut self, cx: &LateContext<'tcx>, impl_item: &'tcx ImplItem<'_>) { if in_external_macro(cx.sess(), impl_item.span) { return; } let parent_id = cx.tcx.hir().get_parent_item(impl_item.hir_id); let imp = cx.tcx.hir().expect_item(parent_id); if_chain! { if let ItemKind::Impl { self_ty: hir_self_ty, .. } = imp.kind; if let TyKind::Path(QPath::Resolved(_, ref item_path)) = hir_self_ty.kind; then { let parameters = &item_path.segments.last().expect(SEGMENTS_MSG).args; let should_check = parameters.as_ref().map_or( true, |params| !params.parenthesized &&!params.args.iter().any(|arg| matches!(arg, GenericArg::Lifetime(_))) ); // TODO: don't short-circuit upon lifetime parameters if should_check { let self_ty = hir_ty_to_ty(cx.tcx, hir_self_ty); let visitor = &mut ImplVisitor { cx, self_ty }; let tcx = cx.tcx; let impl_def_id = tcx.hir().local_def_id(imp.hir_id); let impl_trait_ref = tcx.impl_trait_ref(impl_def_id); if_chain! { if let Some(impl_trait_ref) = impl_trait_ref; if let ImplItemKind::Fn(FnSig { decl: impl_decl, .. }, impl_body_id) = &impl_item.kind; then { visitor.check_trait_method_impl_decl(impl_item, impl_decl, impl_trait_ref); let body = tcx.hir().body(*impl_body_id); visitor.visit_body(body); } else { walk_impl_item(visitor, impl_item) } } } } } } extract_msrv_attr!(LateContext); } struct UseSelfVisitor<'a, 'tcx> { item_path: &'a Path<'a>, cx: &'a LateContext<'tcx>, } impl<'a, 'tcx> Visitor<'tcx> for UseSelfVisitor<'a, 'tcx> { type Map = Map<'tcx>; fn visit_path(&mut self, path: &'tcx Path<'_>, _id: HirId) { if !path.segments.iter().any(|p| p.ident.span.is_dummy()) { if path.segments.len() >= 2 { let last_but_one = &path.segments[path.segments.len() - 2]; if last_but_one.ident.name != kw::SelfUpper { let enum_def_id = match path.res { Res::Def(DefKind::Variant, variant_def_id) => self.cx.tcx.parent(variant_def_id), Res::Def(DefKind::Ctor(def::CtorOf::Variant, _), ctor_def_id) => { let variant_def_id = self.cx.tcx.parent(ctor_def_id); variant_def_id.and_then(|def_id| self.cx.tcx.parent(def_id)) }, _ => None, }; if self.item_path.res.opt_def_id() == enum_def_id { span_use_self_lint(self.cx, path, Some(last_but_one)); } } } if path.segments.last().expect(SEGMENTS_MSG).ident.name != kw::SelfUpper { if self.item_path.res == path.res { span_use_self_lint(self.cx, path, None); } else if let Res::Def(DefKind::Ctor(def::CtorOf::Struct, _), ctor_def_id) = path.res { if self.item_path.res.opt_def_id() == self.cx.tcx.parent(ctor_def_id) { span_use_self_lint(self.cx, path, None); } } } } walk_path(self, path); } fn visit_item(&mut self, item: &'tcx Item<'_>) { match item.kind { ItemKind::Use(..) | ItemKind::Static(..) | ItemKind::Enum(..) | ItemKind::Struct(..) | ItemKind::Union(..) | ItemKind::Impl { .. } | ItemKind::Fn(..) => { // Don't check statements that shadow `Self` or where `Self` can't be used }, _ => walk_item(self, item), } } fn nested_visit_map(&mut self) -> NestedVisitorMap { NestedVisitorMap::All(self.cx.tcx.hir()) } }