use reexport::*; use rustc::hir::*; use rustc::hir::intravisit::FnKind; use rustc::lint::*; use rustc::middle::const_val::ConstVal; use rustc::ty; use rustc_const_eval::EvalHint::ExprTypeChecked; use rustc_const_eval::eval_const_expr_partial; use rustc_const_math::ConstFloat; use syntax::codemap::{Span, Spanned, ExpnFormat}; use syntax::ptr::P; use utils::{ get_item_name, get_parent_expr, implements_trait, in_macro, is_integer_literal, match_path, snippet, span_lint, span_lint_and_then, walk_ptrs_ty }; use utils::sugg::Sugg; /// **What it does:** This lint checks for function arguments and let bindings denoted as `ref`. /// /// **Why is this bad?** The `ref` declaration makes the function take an owned value, but turns /// the argument into a reference (which means that the value is destroyed when exiting the /// function). This adds not much value: either take a reference type, or take an owned value and /// create references in the body. /// /// For let bindings, `let x = &foo;` is preferred over `let ref x = foo`. The type of `x` is more /// obvious with the former. /// /// **Known problems:** If the argument is dereferenced within the function, removing the `ref` /// will lead to errors. This can be fixed by removing the dereferences, e.g. changing `*x` to `x` /// within the function. /// /// **Example:** /// ```rust /// fn foo(ref x: u8) -> bool { .. } /// ``` declare_lint! { pub TOPLEVEL_REF_ARG, Warn, "An entire binding was declared as `ref`, in a function argument (`fn foo(ref x: Bar)`), \ or a `let` statement (`let ref x = foo()`). In such cases, it is preferred to take \ references with `&`." } #[allow(missing_copy_implementations)] pub struct TopLevelRefPass; impl LintPass for TopLevelRefPass { fn get_lints(&self) -> LintArray { lint_array!(TOPLEVEL_REF_ARG) } } impl LateLintPass for TopLevelRefPass { fn check_fn(&mut self, cx: &LateContext, k: FnKind, decl: &FnDecl, _: &Block, _: Span, _: NodeId) { if let FnKind::Closure(_) = k { // Does not apply to closures return; } for ref arg in &decl.inputs { if let PatKind::Binding(BindByRef(_), _, _) = arg.pat.node { span_lint(cx, TOPLEVEL_REF_ARG, arg.pat.span, "`ref` directly on a function argument is ignored. Consider using a reference type instead."); } } } fn check_stmt(&mut self, cx: &LateContext, s: &Stmt) { if_let_chain! {[ let StmtDecl(ref d, _) = s.node, let DeclLocal(ref l) = d.node, let PatKind::Binding(BindByRef(mt), i, None) = l.pat.node, let Some(ref init) = l.init ], { let init = Sugg::hir(cx, init, ".."); let (mutopt,initref) = if mt == Mutability::MutMutable { ("mut ", init.mut_addr()) } else { ("", init.addr()) }; let tyopt = if let Some(ref ty) = l.ty { format!(": &{mutopt}{ty}", mutopt=mutopt, ty=snippet(cx, ty.span, "_")) } else { "".to_owned() }; span_lint_and_then(cx, TOPLEVEL_REF_ARG, l.pat.span, "`ref` on an entire `let` pattern is discouraged, take a reference with `&` instead", |db| { db.span_suggestion(s.span, "try", format!("let {name}{tyopt} = {initref};", name=snippet(cx, i.span, "_"), tyopt=tyopt, initref=initref)); } ); }} } } /// **What it does:** This lint checks for comparisons to NAN. /// /// **Why is this bad?** NAN does not compare meaningfully to anything – not even itself – so those comparisons are simply wrong. /// /// **Known problems:** None /// /// **Example:** `x == NAN` declare_lint!(pub CMP_NAN, Deny, "comparisons to NAN (which will always return false, which is probably not intended)"); #[derive(Copy,Clone)] pub struct CmpNan; impl LintPass for CmpNan { fn get_lints(&self) -> LintArray { lint_array!(CMP_NAN) } } impl LateLintPass for CmpNan { fn check_expr(&mut self, cx: &LateContext, expr: &Expr) { if let ExprBinary(ref cmp, ref left, ref right) = expr.node { if cmp.node.is_comparison() { if let ExprPath(_, ref path) = left.node { check_nan(cx, path, expr.span); } if let ExprPath(_, ref path) = right.node { check_nan(cx, path, expr.span); } } } } } fn check_nan(cx: &LateContext, path: &Path, span: Span) { path.segments.last().map(|seg| { if seg.name.as_str() == "NAN" { span_lint(cx, CMP_NAN, span, "doomed comparison with NAN, use `std::{f32,f64}::is_nan()` instead"); } }); } /// **What it does:** This lint checks for (in-)equality comparisons on floating-point values (apart from zero), except in functions called `*eq*` (which probably implement equality for a type involving floats). /// /// **Why is this bad?** Floating point calculations are usually imprecise, so asking if two values are *exactly* equal is asking for trouble. For a good guide on what to do, see [the floating point guide](http://www.floating-point-gui.de/errors/comparison). /// /// **Known problems:** None /// /// **Example:** `y == 1.23f64` declare_lint!(pub FLOAT_CMP, Warn, "using `==` or `!=` on float values (as floating-point operations \ usually involve rounding errors, it is always better to check for approximate \ equality within small bounds)"); #[derive(Copy,Clone)] pub struct FloatCmp; impl LintPass for FloatCmp { fn get_lints(&self) -> LintArray { lint_array!(FLOAT_CMP) } } impl LateLintPass for FloatCmp { fn check_expr(&mut self, cx: &LateContext, expr: &Expr) { if let ExprBinary(ref cmp, ref left, ref right) = expr.node { let op = cmp.node; if (op == BiEq || op == BiNe) && (is_float(cx, left) || is_float(cx, right)) { if is_allowed(cx, left) || is_allowed(cx, right) { return; } if let Some(name) = get_item_name(cx, expr) { let name = name.as_str(); if name == "eq" || name == "ne" || name == "is_nan" || name.starts_with("eq_") || name.ends_with("_eq") { return; } } span_lint_and_then(cx, FLOAT_CMP, expr.span, "strict comparison of f32 or f64", |db| { let lhs = Sugg::hir(cx, left, ".."); let rhs = Sugg::hir(cx, right, ".."); db.span_suggestion(expr.span, "consider comparing them within some error", format!("({}).abs() < error", lhs - rhs)); db.span_note(expr.span, "std::f32::EPSILON and std::f64::EPSILON are available."); }); } } } } fn is_allowed(cx: &LateContext, expr: &Expr) -> bool { let res = eval_const_expr_partial(cx.tcx, expr, ExprTypeChecked, None); if let Ok(ConstVal::Float(val)) = res { use std::cmp::Ordering; let zero = ConstFloat::FInfer { f32: 0.0, f64: 0.0, }; let infinity = ConstFloat::FInfer { f32: ::std::f32::INFINITY, f64: ::std::f64::INFINITY, }; let neg_infinity = ConstFloat::FInfer { f32: ::std::f32::NEG_INFINITY, f64: ::std::f64::NEG_INFINITY, }; val.try_cmp(zero) == Ok(Ordering::Equal) || val.try_cmp(infinity) == Ok(Ordering::Equal) || val.try_cmp(neg_infinity) == Ok(Ordering::Equal) } else { false } } fn is_float(cx: &LateContext, expr: &Expr) -> bool { matches!(walk_ptrs_ty(cx.tcx.expr_ty(expr)).sty, ty::TyFloat(_)) } /// **What it does:** This lint checks for conversions to owned values just for the sake of a comparison. /// /// **Why is this bad?** The comparison can operate on a reference, so creating an owned value effectively throws it away directly afterwards, which is needlessly consuming code and heap space. /// /// **Known problems:** None /// /// **Example:** `x.to_owned() == y` declare_lint!(pub CMP_OWNED, Warn, "creating owned instances for comparing with others, e.g. `x == \"foo\".to_string()`"); #[derive(Copy,Clone)] pub struct CmpOwned; impl LintPass for CmpOwned { fn get_lints(&self) -> LintArray { lint_array!(CMP_OWNED) } } impl LateLintPass for CmpOwned { fn check_expr(&mut self, cx: &LateContext, expr: &Expr) { if let ExprBinary(ref cmp, ref left, ref right) = expr.node { if cmp.node.is_comparison() { check_to_owned(cx, left, right, true, cmp.span); check_to_owned(cx, right, left, false, cmp.span) } } } } fn check_to_owned(cx: &LateContext, expr: &Expr, other: &Expr, left: bool, op: Span) { let (arg_ty, snip) = match expr.node { ExprMethodCall(Spanned { node: ref name, .. }, _, ref args) if args.len() == 1 => { if name.as_str() == "to_string" || name.as_str() == "to_owned" && is_str_arg(cx, args) { (cx.tcx.expr_ty(&args[0]), snippet(cx, args[0].span, "..")) } else { return; } } ExprCall(ref path, ref v) if v.len() == 1 => { if let ExprPath(None, ref path) = path.node { if match_path(path, &["String", "from_str"]) || match_path(path, &["String", "from"]) { (cx.tcx.expr_ty(&v[0]), snippet(cx, v[0].span, "..")) } else { return; } } else { return; } } _ => return, }; let other_ty = cx.tcx.expr_ty(other); let partial_eq_trait_id = match cx.tcx.lang_items.eq_trait() { Some(id) => id, None => return, }; if !implements_trait(cx, arg_ty, partial_eq_trait_id, vec![other_ty]) { return; } if left { span_lint(cx, CMP_OWNED, expr.span, &format!("this creates an owned instance just for comparison. Consider using `{} {} {}` to \ compare without allocation", snip, snippet(cx, op, "=="), snippet(cx, other.span, ".."))); } else { span_lint(cx, CMP_OWNED, expr.span, &format!("this creates an owned instance just for comparison. Consider using `{} {} {}` to \ compare without allocation", snippet(cx, other.span, ".."), snippet(cx, op, "=="), snip)); } } fn is_str_arg(cx: &LateContext, args: &[P]) -> bool { args.len() == 1 && matches!(walk_ptrs_ty(cx.tcx.expr_ty(&args[0])).sty, ty::TyStr) } /// **What it does:** This lint checks for getting the remainder of a division by one. /// /// **Why is this bad?** The result can only ever be zero. No one will write such code deliberately, unless trying to win an Underhanded Rust Contest. Even for that contest, it's probably a bad idea. Use something more underhanded. /// /// **Known problems:** None /// /// **Example:** `x % 1` declare_lint!(pub MODULO_ONE, Warn, "taking a number modulo 1, which always returns 0"); #[derive(Copy,Clone)] pub struct ModuloOne; impl LintPass for ModuloOne { fn get_lints(&self) -> LintArray { lint_array!(MODULO_ONE) } } impl LateLintPass for ModuloOne { fn check_expr(&mut self, cx: &LateContext, expr: &Expr) { if let ExprBinary(ref cmp, _, ref right) = expr.node { if let Spanned { node: BinOp_::BiRem, .. } = *cmp { if is_integer_literal(right, 1) { span_lint(cx, MODULO_ONE, expr.span, "any number modulo 1 will be 0"); } } } } } /// **What it does:** This lint checks for patterns in the form `name @ _`. /// /// **Why is this bad?** It's almost always more readable to just use direct bindings. /// /// **Known problems:** None /// /// **Example**: /// ```rust /// match v { /// Some(x) => (), /// y @ _ => (), // easier written as `y`, /// } /// ``` declare_lint!(pub REDUNDANT_PATTERN, Warn, "using `name @ _` in a pattern"); #[derive(Copy,Clone)] pub struct PatternPass; impl LintPass for PatternPass { fn get_lints(&self) -> LintArray { lint_array!(REDUNDANT_PATTERN) } } impl LateLintPass for PatternPass { fn check_pat(&mut self, cx: &LateContext, pat: &Pat) { if let PatKind::Binding(_, ref ident, Some(ref right)) = pat.node { if right.node == PatKind::Wild { span_lint(cx, REDUNDANT_PATTERN, pat.span, &format!("the `{} @ _` pattern can be written as just `{}`", ident.node, ident.node)); } } } } /// **What it does:** This lint checks for the use of bindings with a single leading underscore /// /// **Why is this bad?** A single leading underscore is usually used to indicate that a binding /// will not be used. Using such a binding breaks this expectation. /// /// **Known problems:** The lint does not work properly with desugaring and macro, it has been /// allowed in the mean time. /// /// **Example**: /// ```rust /// let _x = 0; /// let y = _x + 1; // Here we are using `_x`, even though it has a leading underscore. /// // We should rename `_x` to `x` /// ``` declare_lint!(pub USED_UNDERSCORE_BINDING, Allow, "using a binding which is prefixed with an underscore"); #[derive(Copy, Clone)] pub struct UsedUnderscoreBinding; impl LintPass for UsedUnderscoreBinding { fn get_lints(&self) -> LintArray { lint_array!(USED_UNDERSCORE_BINDING) } } impl LateLintPass for UsedUnderscoreBinding { #[cfg_attr(rustfmt, rustfmt_skip)] fn check_expr(&mut self, cx: &LateContext, expr: &Expr) { if in_attributes_expansion(cx, expr) { // Don't lint things expanded by #[derive(...)], etc return; } let binding = match expr.node { ExprPath(_, ref path) => { let binding = path.segments .last() .expect("path should always have at least one segment") .name .as_str(); if binding.starts_with('_') && !binding.starts_with("__") && binding != "_result" && // FIXME: #944 is_used(cx, expr) && // don't lint if the declaration is in a macro non_macro_local(cx, &cx.tcx.expect_def(expr.id)) { Some(binding) } else { None } } ExprField(_, spanned) => { let name = spanned.node.as_str(); if name.starts_with('_') && !name.starts_with("__") { Some(name) } else { None } } _ => None, }; if let Some(binding) = binding { span_lint(cx, USED_UNDERSCORE_BINDING, expr.span, &format!("used binding `{}` which is prefixed with an underscore. A leading \ underscore signals that a binding will not be used.", binding)); } } } /// Heuristic to see if an expression is used. Should be compatible with `unused_variables`'s idea /// of what it means for an expression to be "used". fn is_used(cx: &LateContext, expr: &Expr) -> bool { if let Some(ref parent) = get_parent_expr(cx, expr) { match parent.node { ExprAssign(_, ref rhs) | ExprAssignOp(_, _, ref rhs) => **rhs == *expr, _ => is_used(cx, parent), } } else { true } } /// Test whether an expression is in a macro expansion (e.g. something generated by /// `#[derive(...)`] or the like). fn in_attributes_expansion(cx: &LateContext, expr: &Expr) -> bool { cx.sess().codemap().with_expn_info(expr.span.expn_id, |info_opt| { info_opt.map_or(false, |info| { matches!(info.callee.format, ExpnFormat::MacroAttribute(_)) }) }) } /// Test whether `def` is a variable defined outside a macro. fn non_macro_local(cx: &LateContext, def: &def::Def) -> bool { match *def { def::Def::Local(_, id) | def::Def::Upvar(_, id, _, _) => { if let Some(span) = cx.tcx.map.opt_span(id) { !in_macro(cx, span) } else { true } } _ => false, } }