use crate::{map_unit_fn::OPTION_MAP_UNIT_FN, matches::MATCH_AS_REF}; use clippy_utils::diagnostics::span_lint_and_sugg; use clippy_utils::higher::IfLetOrMatch; use clippy_utils::source::{snippet_with_applicability, snippet_with_context}; use clippy_utils::ty::{is_type_diagnostic_item, peel_mid_ty_refs_is_mutable, type_is_unsafe_function}; use clippy_utils::{ can_move_expr_to_closure, in_constant, is_else_clause, is_lang_ctor, is_lint_allowed, path_to_local_id, peel_hir_expr_refs, peel_hir_expr_while, CaptureKind, }; use rustc_ast::util::parser::PREC_POSTFIX; use rustc_errors::Applicability; use rustc_hir::LangItem::{OptionNone, OptionSome}; use rustc_hir::{ def::Res, Arm, BindingAnnotation, Block, BlockCheckMode, Expr, ExprKind, HirId, Mutability, Pat, PatKind, Path, QPath, UnsafeSource, }; use rustc_lint::{LateContext, LateLintPass, LintContext}; use rustc_middle::lint::in_external_macro; use rustc_session::{declare_lint_pass, declare_tool_lint}; use rustc_span::{sym, SyntaxContext}; declare_clippy_lint! { /// ### What it does /// Checks for usages of `match` which could be implemented using `map` /// /// ### Why is this bad? /// Using the `map` method is clearer and more concise. /// /// ### Example /// ```rust /// match Some(0) { /// Some(x) => Some(x + 1), /// None => None, /// }; /// ``` /// Use instead: /// ```rust /// Some(0).map(|x| x + 1); /// ``` #[clippy::version = "1.52.0"] pub MANUAL_MAP, style, "reimplementation of `map`" } declare_lint_pass!(ManualMap => [MANUAL_MAP]); impl LateLintPass<'_> for ManualMap { #[allow(clippy::too_many_lines)] fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) { let (scrutinee, then_pat, then_body, else_pat, else_body) = match IfLetOrMatch::parse(cx, expr) { Some(IfLetOrMatch::IfLet(scrutinee, pat, body, Some(r#else))) => (scrutinee, pat, body, None, r#else), Some(IfLetOrMatch::Match( scrutinee, [arm1 @ Arm { guard: None, .. }, arm2 @ Arm { guard: None, .. }], _, )) => (scrutinee, arm1.pat, arm1.body, Some(arm2.pat), arm2.body), _ => return, }; if in_external_macro(cx.sess(), expr.span) || in_constant(cx, expr.hir_id) { return; } let (scrutinee_ty, ty_ref_count, ty_mutability) = peel_mid_ty_refs_is_mutable(cx.typeck_results().expr_ty(scrutinee)); if !(is_type_diagnostic_item(cx, scrutinee_ty, sym::Option) && is_type_diagnostic_item(cx, cx.typeck_results().expr_ty(expr), sym::Option)) { return; } let expr_ctxt = expr.span.ctxt(); let (some_expr, some_pat, pat_ref_count, is_wild_none) = match ( try_parse_pattern(cx, then_pat, expr_ctxt), else_pat.map_or(Some(OptionPat::Wild), |p| try_parse_pattern(cx, p, expr_ctxt)), ) { (Some(OptionPat::Wild), Some(OptionPat::Some { pattern, ref_count })) if is_none_expr(cx, then_body) => { (else_body, pattern, ref_count, true) }, (Some(OptionPat::None), Some(OptionPat::Some { pattern, ref_count })) if is_none_expr(cx, then_body) => { (else_body, pattern, ref_count, false) }, (Some(OptionPat::Some { pattern, ref_count }), Some(OptionPat::Wild)) if is_none_expr(cx, else_body) => { (then_body, pattern, ref_count, true) }, (Some(OptionPat::Some { pattern, ref_count }), Some(OptionPat::None)) if is_none_expr(cx, else_body) => { (then_body, pattern, ref_count, false) }, _ => return, }; // Top level or patterns aren't allowed in closures. if matches!(some_pat.kind, PatKind::Or(_)) { return; } let some_expr = match get_some_expr(cx, some_expr, false, expr_ctxt) { Some(expr) => expr, None => return, }; // These two lints will go back and forth with each other. if cx.typeck_results().expr_ty(some_expr.expr) == cx.tcx.types.unit && !is_lint_allowed(cx, OPTION_MAP_UNIT_FN, expr.hir_id) { return; } // `map` won't perform any adjustments. if !cx.typeck_results().expr_adjustments(some_expr.expr).is_empty() { return; } // Determine which binding mode to use. let explicit_ref = some_pat.contains_explicit_ref_binding(); let binding_ref = explicit_ref.or_else(|| (ty_ref_count != pat_ref_count).then(|| ty_mutability)); let as_ref_str = match binding_ref { Some(Mutability::Mut) => ".as_mut()", Some(Mutability::Not) => ".as_ref()", None => "", }; match can_move_expr_to_closure(cx, some_expr.expr) { Some(captures) => { // Check if captures the closure will need conflict with borrows made in the scrutinee. // TODO: check all the references made in the scrutinee expression. This will require interacting // with the borrow checker. Currently only `[.]*` is checked for. if let Some(binding_ref_mutability) = binding_ref { let e = peel_hir_expr_while(scrutinee, |e| match e.kind { ExprKind::Field(e, _) | ExprKind::AddrOf(_, _, e) => Some(e), _ => None, }); if let ExprKind::Path(QPath::Resolved(None, Path { res: Res::Local(l), .. })) = e.kind { match captures.get(l) { Some(CaptureKind::Value | CaptureKind::Ref(Mutability::Mut)) => return, Some(CaptureKind::Ref(Mutability::Not)) if binding_ref_mutability == Mutability::Mut => { return; }, Some(CaptureKind::Ref(Mutability::Not)) | None => (), } } } }, None => return, }; let mut app = Applicability::MachineApplicable; // Remove address-of expressions from the scrutinee. Either `as_ref` will be called, or // it's being passed by value. let scrutinee = peel_hir_expr_refs(scrutinee).0; let (scrutinee_str, _) = snippet_with_context(cx, scrutinee.span, expr_ctxt, "..", &mut app); let scrutinee_str = if scrutinee.span.ctxt() == expr.span.ctxt() && scrutinee.precedence().order() < PREC_POSTFIX { format!("({})", scrutinee_str) } else { scrutinee_str.into() }; let body_str = if let PatKind::Binding(annotation, id, some_binding, None) = some_pat.kind { if_chain! { if !some_expr.needs_unsafe_block; if let Some(func) = can_pass_as_func(cx, id, some_expr.expr); if func.span.ctxt() == some_expr.expr.span.ctxt(); then { snippet_with_applicability(cx, func.span, "..", &mut app).into_owned() } else { if path_to_local_id(some_expr.expr, id) && !is_lint_allowed(cx, MATCH_AS_REF, expr.hir_id) && binding_ref.is_some() { return; } // `ref` and `ref mut` annotations were handled earlier. let annotation = if matches!(annotation, BindingAnnotation::Mutable) { "mut " } else { "" }; let expr_snip = snippet_with_context(cx, some_expr.expr.span, expr_ctxt, "..", &mut app).0; if some_expr.needs_unsafe_block { format!("|{}{}| unsafe {{ {} }}", annotation, some_binding, expr_snip) } else { format!("|{}{}| {}", annotation, some_binding, expr_snip) } } } } else if !is_wild_none && explicit_ref.is_none() { // TODO: handle explicit reference annotations. let pat_snip = snippet_with_context(cx, some_pat.span, expr_ctxt, "..", &mut app).0; let expr_snip = snippet_with_context(cx, some_expr.expr.span, expr_ctxt, "..", &mut app).0; if some_expr.needs_unsafe_block { format!("|{}| unsafe {{ {} }}", pat_snip, expr_snip) } else { format!("|{}| {}", pat_snip, expr_snip) } } else { // Refutable bindings and mixed reference annotations can't be handled by `map`. return; }; span_lint_and_sugg( cx, MANUAL_MAP, expr.span, "manual implementation of `Option::map`", "try this", if else_pat.is_none() && is_else_clause(cx.tcx, expr) { format!("{{ {}{}.map({}) }}", scrutinee_str, as_ref_str, body_str) } else { format!("{}{}.map({})", scrutinee_str, as_ref_str, body_str) }, app, ); } } // Checks whether the expression could be passed as a function, or whether a closure is needed. // Returns the function to be passed to `map` if it exists. fn can_pass_as_func(cx: &LateContext<'tcx>, binding: HirId, expr: &'tcx Expr<'_>) -> Option<&'tcx Expr<'tcx>> { match expr.kind { ExprKind::Call(func, [arg]) if path_to_local_id(arg, binding) && cx.typeck_results().expr_adjustments(arg).is_empty() && !type_is_unsafe_function(cx, cx.typeck_results().expr_ty(func).peel_refs()) => { Some(func) }, _ => None, } } enum OptionPat<'a> { Wild, None, Some { // The pattern contained in the `Some` tuple. pattern: &'a Pat<'a>, // The number of references before the `Some` tuple. // e.g. `&&Some(_)` has a ref count of 2. ref_count: usize, }, } struct SomeExpr<'tcx> { expr: &'tcx Expr<'tcx>, needs_unsafe_block: bool, } // Try to parse into a recognized `Option` pattern. // i.e. `_`, `None`, `Some(..)`, or a reference to any of those. fn try_parse_pattern(cx: &LateContext<'tcx>, pat: &'tcx Pat<'_>, ctxt: SyntaxContext) -> Option> { fn f(cx: &LateContext<'tcx>, pat: &'tcx Pat<'_>, ref_count: usize, ctxt: SyntaxContext) -> Option> { match pat.kind { PatKind::Wild => Some(OptionPat::Wild), PatKind::Ref(pat, _) => f(cx, pat, ref_count + 1, ctxt), PatKind::Path(ref qpath) if is_lang_ctor(cx, qpath, OptionNone) => Some(OptionPat::None), PatKind::TupleStruct(ref qpath, [pattern], _) if is_lang_ctor(cx, qpath, OptionSome) && pat.span.ctxt() == ctxt => { Some(OptionPat::Some { pattern, ref_count }) }, _ => None, } } f(cx, pat, 0, ctxt) } // Checks for an expression wrapped by the `Some` constructor. Returns the contained expression. fn get_some_expr( cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>, needs_unsafe_block: bool, ctxt: SyntaxContext, ) -> Option> { // TODO: Allow more complex expressions. match expr.kind { ExprKind::Call( Expr { kind: ExprKind::Path(ref qpath), .. }, [arg], ) if ctxt == expr.span.ctxt() && is_lang_ctor(cx, qpath, OptionSome) => Some(SomeExpr { expr: arg, needs_unsafe_block, }), ExprKind::Block( Block { stmts: [], expr: Some(expr), rules, .. }, _, ) => get_some_expr( cx, expr, needs_unsafe_block || *rules == BlockCheckMode::UnsafeBlock(UnsafeSource::UserProvided), ctxt, ), _ => None, } } // Checks for the `None` value. fn is_none_expr(cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) -> bool { match expr.kind { ExprKind::Path(ref qpath) => is_lang_ctor(cx, qpath, OptionNone), ExprKind::Block( Block { stmts: [], expr: Some(expr), .. }, _, ) => is_none_expr(cx, expr), _ => false, } }