#[macro_use] pub mod sym; #[allow(clippy::module_name_repetitions)] pub mod ast_utils; pub mod attrs; pub mod author; pub mod camel_case; pub mod comparisons; pub mod conf; pub mod constants; mod diagnostics; pub mod higher; mod hir_utils; pub mod inspector; pub mod internal_lints; pub mod numeric_literal; pub mod paths; pub mod ptr; pub mod sugg; pub mod usage; pub use self::attrs::*; pub use self::diagnostics::*; pub use self::hir_utils::{both, eq_expr_value, over, SpanlessEq, SpanlessHash}; use std::borrow::Cow; use std::mem; use if_chain::if_chain; use rustc_ast::ast::{self, Attribute, LitKind}; use rustc_attr as attr; use rustc_errors::Applicability; use rustc_hir as hir; use rustc_hir::def::{DefKind, Res}; use rustc_hir::def_id::{DefId, CRATE_DEF_INDEX, LOCAL_CRATE}; use rustc_hir::intravisit::{NestedVisitorMap, Visitor}; use rustc_hir::Node; use rustc_hir::{ def, Arm, Block, Body, Constness, Crate, Expr, ExprKind, FnDecl, HirId, ImplItem, ImplItemKind, Item, ItemKind, MatchSource, Param, Pat, PatKind, Path, PathSegment, QPath, TraitItem, TraitItemKind, TraitRef, TyKind, Unsafety, }; use rustc_infer::infer::TyCtxtInferExt; use rustc_lint::{LateContext, Level, Lint, LintContext}; use rustc_middle::hir::map::Map; use rustc_middle::ty::{self, layout::IntegerExt, subst::GenericArg, Ty, TyCtxt, TypeFoldable}; use rustc_mir::const_eval; use rustc_span::hygiene::{ExpnKind, MacroKind}; use rustc_span::source_map::original_sp; use rustc_span::symbol::{self, kw, Symbol}; use rustc_span::{BytePos, Pos, Span, DUMMY_SP}; use rustc_target::abi::Integer; use rustc_trait_selection::traits::query::normalize::AtExt; use smallvec::SmallVec; use crate::consts::{constant, Constant}; /// Returns `true` if the two spans come from differing expansions (i.e., one is /// from a macro and one isn't). #[must_use] pub fn differing_macro_contexts(lhs: Span, rhs: Span) -> bool { rhs.ctxt() != lhs.ctxt() } /// Returns `true` if the given `NodeId` is inside a constant context /// /// # Example /// /// ```rust,ignore /// if in_constant(cx, expr.hir_id) { /// // Do something /// } /// ``` pub fn in_constant(cx: &LateContext<'_>, id: HirId) -> bool { let parent_id = cx.tcx.hir().get_parent_item(id); match cx.tcx.hir().get(parent_id) { Node::Item(&Item { kind: ItemKind::Const(..) | ItemKind::Static(..), .. }) | Node::TraitItem(&TraitItem { kind: TraitItemKind::Const(..), .. }) | Node::ImplItem(&ImplItem { kind: ImplItemKind::Const(..), .. }) | Node::AnonConst(_) => true, Node::Item(&Item { kind: ItemKind::Fn(ref sig, ..), .. }) | Node::ImplItem(&ImplItem { kind: ImplItemKind::Fn(ref sig, _), .. }) => sig.header.constness == Constness::Const, _ => false, } } /// Returns `true` if this `span` was expanded by any macro. #[must_use] pub fn in_macro(span: Span) -> bool { if span.from_expansion() { !matches!(span.ctxt().outer_expn_data().kind, ExpnKind::Desugaring(..)) } else { false } } // If the snippet is empty, it's an attribute that was inserted during macro // expansion and we want to ignore those, because they could come from external // sources that the user has no control over. // For some reason these attributes don't have any expansion info on them, so // we have to check it this way until there is a better way. pub fn is_present_in_source(cx: &T, span: Span) -> bool { if let Some(snippet) = snippet_opt(cx, span) { if snippet.is_empty() { return false; } } true } /// Checks if given pattern is a wildcard (`_`) pub fn is_wild<'tcx>(pat: &impl std::ops::Deref>) -> bool { matches!(pat.kind, PatKind::Wild) } /// Checks if type is struct, enum or union type with the given def path. pub fn match_type(cx: &LateContext<'_>, ty: Ty<'_>, path: &[&str]) -> bool { match ty.kind { ty::Adt(adt, _) => match_def_path(cx, adt.did, path), _ => false, } } /// Checks if the type is equal to a diagnostic item pub fn is_type_diagnostic_item(cx: &LateContext<'_>, ty: Ty<'_>, diag_item: Symbol) -> bool { match ty.kind { ty::Adt(adt, _) => cx.tcx.is_diagnostic_item(diag_item, adt.did), _ => false, } } /// Checks if the type is equal to a lang item pub fn is_type_lang_item(cx: &LateContext<'_>, ty: Ty<'_>, lang_item: hir::LangItem) -> bool { match ty.kind { ty::Adt(adt, _) => cx.tcx.lang_items().require(lang_item).unwrap() == adt.did, _ => false, } } /// Checks if the method call given in `expr` belongs to the given trait. pub fn match_trait_method(cx: &LateContext<'_>, expr: &Expr<'_>, path: &[&str]) -> bool { let def_id = cx.typeck_results().type_dependent_def_id(expr.hir_id).unwrap(); let trt_id = cx.tcx.trait_of_item(def_id); trt_id.map_or(false, |trt_id| match_def_path(cx, trt_id, path)) } /// Checks if an expression references a variable of the given name. pub fn match_var(expr: &Expr<'_>, var: Symbol) -> bool { if let ExprKind::Path(QPath::Resolved(None, ref path)) = expr.kind { if let [p] = path.segments { return p.ident.name == var; } } false } pub fn last_path_segment<'tcx>(path: &QPath<'tcx>) -> &'tcx PathSegment<'tcx> { match *path { QPath::Resolved(_, ref path) => path.segments.last().expect("A path must have at least one segment"), QPath::TypeRelative(_, ref seg) => seg, QPath::LangItem(..) => panic!("last_path_segment: lang item has no path segments"), } } pub fn single_segment_path<'tcx>(path: &QPath<'tcx>) -> Option<&'tcx PathSegment<'tcx>> { match *path { QPath::Resolved(_, ref path) => path.segments.get(0), QPath::TypeRelative(_, ref seg) => Some(seg), QPath::LangItem(..) => None, } } /// Matches a `QPath` against a slice of segment string literals. /// /// There is also `match_path` if you are dealing with a `rustc_hir::Path` instead of a /// `rustc_hir::QPath`. /// /// # Examples /// ```rust,ignore /// match_qpath(path, &["std", "rt", "begin_unwind"]) /// ``` pub fn match_qpath(path: &QPath<'_>, segments: &[&str]) -> bool { match *path { QPath::Resolved(_, ref path) => match_path(path, segments), QPath::TypeRelative(ref ty, ref segment) => match ty.kind { TyKind::Path(ref inner_path) => { if let [prefix @ .., end] = segments { if match_qpath(inner_path, prefix) { return segment.ident.name.as_str() == *end; } } false }, _ => false, }, QPath::LangItem(..) => false, } } /// Matches a `Path` against a slice of segment string literals. /// /// There is also `match_qpath` if you are dealing with a `rustc_hir::QPath` instead of a /// `rustc_hir::Path`. /// /// # Examples /// /// ```rust,ignore /// if match_path(&trait_ref.path, &paths::HASH) { /// // This is the `std::hash::Hash` trait. /// } /// /// if match_path(ty_path, &["rustc", "lint", "Lint"]) { /// // This is a `rustc_middle::lint::Lint`. /// } /// ``` pub fn match_path(path: &Path<'_>, segments: &[&str]) -> bool { path.segments .iter() .rev() .zip(segments.iter().rev()) .all(|(a, b)| a.ident.name.as_str() == *b) } /// Matches a `Path` against a slice of segment string literals, e.g. /// /// # Examples /// ```rust,ignore /// match_path_ast(path, &["std", "rt", "begin_unwind"]) /// ``` pub fn match_path_ast(path: &ast::Path, segments: &[&str]) -> bool { path.segments .iter() .rev() .zip(segments.iter().rev()) .all(|(a, b)| a.ident.name.as_str() == *b) } /// Gets the definition associated to a path. pub fn path_to_res(cx: &LateContext<'_>, path: &[&str]) -> Option { let crates = cx.tcx.crates(); let krate = crates .iter() .find(|&&krate| cx.tcx.crate_name(krate).as_str() == path[0]); if let Some(krate) = krate { let krate = DefId { krate: *krate, index: CRATE_DEF_INDEX, }; let mut items = cx.tcx.item_children(krate); let mut path_it = path.iter().skip(1).peekable(); loop { let segment = match path_it.next() { Some(segment) => segment, None => return None, }; let result = SmallVec::<[_; 8]>::new(); for item in mem::replace(&mut items, cx.tcx.arena.alloc_slice(&result)).iter() { if item.ident.name.as_str() == *segment { if path_it.peek().is_none() { return Some(item.res); } items = cx.tcx.item_children(item.res.def_id()); break; } } } } else { None } } pub fn qpath_res(cx: &LateContext<'_>, qpath: &hir::QPath<'_>, id: hir::HirId) -> Res { match qpath { hir::QPath::Resolved(_, path) => path.res, hir::QPath::TypeRelative(..) | hir::QPath::LangItem(..) => { if cx.tcx.has_typeck_results(id.owner.to_def_id()) { cx.tcx.typeck(id.owner.to_def_id().expect_local()).qpath_res(qpath, id) } else { Res::Err } }, } } /// Convenience function to get the `DefId` of a trait by path. /// It could be a trait or trait alias. pub fn get_trait_def_id(cx: &LateContext<'_>, path: &[&str]) -> Option { let res = match path_to_res(cx, path) { Some(res) => res, None => return None, }; match res { Res::Def(DefKind::Trait | DefKind::TraitAlias, trait_id) => Some(trait_id), Res::Err => unreachable!("this trait resolution is impossible: {:?}", &path), _ => None, } } /// Checks whether a type implements a trait. /// See also `get_trait_def_id`. pub fn implements_trait<'tcx>( cx: &LateContext<'tcx>, ty: Ty<'tcx>, trait_id: DefId, ty_params: &[GenericArg<'tcx>], ) -> bool { // Do not check on infer_types to avoid panic in evaluate_obligation. if ty.has_infer_types() { return false; } let ty = cx.tcx.erase_regions(&ty); let ty_params = cx.tcx.mk_substs(ty_params.iter()); cx.tcx.type_implements_trait((trait_id, ty, ty_params, cx.param_env)) } /// Gets the `hir::TraitRef` of the trait the given method is implemented for. /// /// Use this if you want to find the `TraitRef` of the `Add` trait in this example: /// /// ```rust /// struct Point(isize, isize); /// /// impl std::ops::Add for Point { /// type Output = Self; /// /// fn add(self, other: Self) -> Self { /// Point(0, 0) /// } /// } /// ``` pub fn trait_ref_of_method<'tcx>(cx: &LateContext<'tcx>, hir_id: HirId) -> Option<&'tcx TraitRef<'tcx>> { // Get the implemented trait for the current function let parent_impl = cx.tcx.hir().get_parent_item(hir_id); if_chain! { if parent_impl != hir::CRATE_HIR_ID; if let hir::Node::Item(item) = cx.tcx.hir().get(parent_impl); if let hir::ItemKind::Impl{ of_trait: trait_ref, .. } = &item.kind; then { return trait_ref.as_ref(); } } None } /// Checks whether this type implements `Drop`. pub fn has_drop<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> bool { match ty.ty_adt_def() { Some(def) => def.has_dtor(cx.tcx), None => false, } } /// Returns the method names and argument list of nested method call expressions that make up /// `expr`. method/span lists are sorted with the most recent call first. pub fn method_calls<'tcx>( expr: &'tcx Expr<'tcx>, max_depth: usize, ) -> (Vec, Vec<&'tcx [Expr<'tcx>]>, Vec) { let mut method_names = Vec::with_capacity(max_depth); let mut arg_lists = Vec::with_capacity(max_depth); let mut spans = Vec::with_capacity(max_depth); let mut current = expr; for _ in 0..max_depth { if let ExprKind::MethodCall(path, span, args, _) = ¤t.kind { if args.iter().any(|e| e.span.from_expansion()) { break; } method_names.push(path.ident.name); arg_lists.push(&**args); spans.push(*span); current = &args[0]; } else { break; } } (method_names, arg_lists, spans) } /// Matches an `Expr` against a chain of methods, and return the matched `Expr`s. /// /// For example, if `expr` represents the `.baz()` in `foo.bar().baz()`, /// `method_chain_args(expr, &["bar", "baz"])` will return a `Vec` /// containing the `Expr`s for /// `.bar()` and `.baz()` pub fn method_chain_args<'a>(expr: &'a Expr<'_>, methods: &[&str]) -> Option]>> { let mut current = expr; let mut matched = Vec::with_capacity(methods.len()); for method_name in methods.iter().rev() { // method chains are stored last -> first if let ExprKind::MethodCall(ref path, _, ref args, _) = current.kind { if path.ident.name.as_str() == *method_name { if args.iter().any(|e| e.span.from_expansion()) { return None; } matched.push(&**args); // build up `matched` backwards current = &args[0] // go to parent expression } else { return None; } } else { return None; } } // Reverse `matched` so that it is in the same order as `methods`. matched.reverse(); Some(matched) } /// Returns `true` if the provided `def_id` is an entrypoint to a program. pub fn is_entrypoint_fn(cx: &LateContext<'_>, def_id: DefId) -> bool { cx.tcx .entry_fn(LOCAL_CRATE) .map_or(false, |(entry_fn_def_id, _)| def_id == entry_fn_def_id.to_def_id()) } /// Gets the name of the item the expression is in, if available. pub fn get_item_name(cx: &LateContext<'_>, expr: &Expr<'_>) -> Option { let parent_id = cx.tcx.hir().get_parent_item(expr.hir_id); match cx.tcx.hir().find(parent_id) { Some( Node::Item(Item { ident, .. }) | Node::TraitItem(TraitItem { ident, .. }) | Node::ImplItem(ImplItem { ident, .. }), ) => Some(ident.name), _ => None, } } /// Gets the name of a `Pat`, if any. pub fn get_pat_name(pat: &Pat<'_>) -> Option { match pat.kind { PatKind::Binding(.., ref spname, _) => Some(spname.name), PatKind::Path(ref qpath) => single_segment_path(qpath).map(|ps| ps.ident.name), PatKind::Box(ref p) | PatKind::Ref(ref p, _) => get_pat_name(&*p), _ => None, } } struct ContainsName { name: Symbol, result: bool, } impl<'tcx> Visitor<'tcx> for ContainsName { type Map = Map<'tcx>; fn visit_name(&mut self, _: Span, name: Symbol) { if self.name == name { self.result = true; } } fn nested_visit_map(&mut self) -> NestedVisitorMap { NestedVisitorMap::None } } /// Checks if an `Expr` contains a certain name. pub fn contains_name(name: Symbol, expr: &Expr<'_>) -> bool { let mut cn = ContainsName { name, result: false }; cn.visit_expr(expr); cn.result } /// Converts a span to a code snippet if available, otherwise use default. /// /// This is useful if you want to provide suggestions for your lint or more generally, if you want /// to convert a given `Span` to a `str`. /// /// # Example /// ```rust,ignore /// snippet(cx, expr.span, "..") /// ``` pub fn snippet<'a, T: LintContext>(cx: &T, span: Span, default: &'a str) -> Cow<'a, str> { snippet_opt(cx, span).map_or_else(|| Cow::Borrowed(default), From::from) } /// Same as `snippet`, but it adapts the applicability level by following rules: /// /// - Applicability level `Unspecified` will never be changed. /// - If the span is inside a macro, change the applicability level to `MaybeIncorrect`. /// - If the default value is used and the applicability level is `MachineApplicable`, change it to /// `HasPlaceholders` pub fn snippet_with_applicability<'a, T: LintContext>( cx: &T, span: Span, default: &'a str, applicability: &mut Applicability, ) -> Cow<'a, str> { if *applicability != Applicability::Unspecified && span.from_expansion() { *applicability = Applicability::MaybeIncorrect; } snippet_opt(cx, span).map_or_else( || { if *applicability == Applicability::MachineApplicable { *applicability = Applicability::HasPlaceholders; } Cow::Borrowed(default) }, From::from, ) } /// Same as `snippet`, but should only be used when it's clear that the input span is /// not a macro argument. pub fn snippet_with_macro_callsite<'a, T: LintContext>(cx: &T, span: Span, default: &'a str) -> Cow<'a, str> { snippet(cx, span.source_callsite(), default) } /// Converts a span to a code snippet. Returns `None` if not available. pub fn snippet_opt(cx: &T, span: Span) -> Option { cx.sess().source_map().span_to_snippet(span).ok() } /// Converts a span (from a block) to a code snippet if available, otherwise use default. /// /// This trims the code of indentation, except for the first line. Use it for blocks or block-like /// things which need to be printed as such. /// /// The `indent_relative_to` arg can be used, to provide a span, where the indentation of the /// resulting snippet of the given span. /// /// # Example /// /// ```rust,ignore /// snippet_block(cx, block.span, "..", None) /// // where, `block` is the block of the if expr /// if x { /// y; /// } /// // will return the snippet /// { /// y; /// } /// ``` /// /// ```rust,ignore /// snippet_block(cx, block.span, "..", Some(if_expr.span)) /// // where, `block` is the block of the if expr /// if x { /// y; /// } /// // will return the snippet /// { /// y; /// } // aligned with `if` /// ``` /// Note that the first line of the snippet always has 0 indentation. pub fn snippet_block<'a, T: LintContext>( cx: &T, span: Span, default: &'a str, indent_relative_to: Option, ) -> Cow<'a, str> { let snip = snippet(cx, span, default); let indent = indent_relative_to.and_then(|s| indent_of(cx, s)); trim_multiline(snip, true, indent) } /// Same as `snippet_block`, but adapts the applicability level by the rules of /// `snippet_with_applicabiliy`. pub fn snippet_block_with_applicability<'a, T: LintContext>( cx: &T, span: Span, default: &'a str, indent_relative_to: Option, applicability: &mut Applicability, ) -> Cow<'a, str> { let snip = snippet_with_applicability(cx, span, default, applicability); let indent = indent_relative_to.and_then(|s| indent_of(cx, s)); trim_multiline(snip, true, indent) } /// Returns a new Span that extends the original Span to the first non-whitespace char of the first /// line. /// /// ```rust,ignore /// let x = (); /// // ^^ /// // will be converted to /// let x = (); /// // ^^^^^^^^^^ /// ``` pub fn first_line_of_span(cx: &T, span: Span) -> Span { first_char_in_first_line(cx, span).map_or(span, |first_char_pos| span.with_lo(first_char_pos)) } fn first_char_in_first_line(cx: &T, span: Span) -> Option { let line_span = line_span(cx, span); snippet_opt(cx, line_span).and_then(|snip| { snip.find(|c: char| !c.is_whitespace()) .map(|pos| line_span.lo() + BytePos::from_usize(pos)) }) } /// Returns the indentation of the line of a span /// /// ```rust,ignore /// let x = (); /// // ^^ -- will return 0 /// let x = (); /// // ^^ -- will return 4 /// ``` pub fn indent_of(cx: &T, span: Span) -> Option { snippet_opt(cx, line_span(cx, span)).and_then(|snip| snip.find(|c: char| !c.is_whitespace())) } /// Extends the span to the beginning of the spans line, incl. whitespaces. /// /// ```rust,ignore /// let x = (); /// // ^^ /// // will be converted to /// let x = (); /// // ^^^^^^^^^^^^^^ /// ``` fn line_span(cx: &T, span: Span) -> Span { let span = original_sp(span, DUMMY_SP); let source_map_and_line = cx.sess().source_map().lookup_line(span.lo()).unwrap(); let line_no = source_map_and_line.line; let line_start = source_map_and_line.sf.lines[line_no]; Span::new(line_start, span.hi(), span.ctxt()) } /// Like `snippet_block`, but add braces if the expr is not an `ExprKind::Block`. /// Also takes an `Option` which can be put inside the braces. pub fn expr_block<'a, T: LintContext>( cx: &T, expr: &Expr<'_>, option: Option, default: &'a str, indent_relative_to: Option, ) -> Cow<'a, str> { let code = snippet_block(cx, expr.span, default, indent_relative_to); let string = option.unwrap_or_default(); if expr.span.from_expansion() { Cow::Owned(format!("{{ {} }}", snippet_with_macro_callsite(cx, expr.span, default))) } else if let ExprKind::Block(_, _) = expr.kind { Cow::Owned(format!("{}{}", code, string)) } else if string.is_empty() { Cow::Owned(format!("{{ {} }}", code)) } else { Cow::Owned(format!("{{\n{};\n{}\n}}", code, string)) } } /// Trim indentation from a multiline string with possibility of ignoring the /// first line. fn trim_multiline(s: Cow<'_, str>, ignore_first: bool, indent: Option) -> Cow<'_, str> { let s_space = trim_multiline_inner(s, ignore_first, indent, ' '); let s_tab = trim_multiline_inner(s_space, ignore_first, indent, '\t'); trim_multiline_inner(s_tab, ignore_first, indent, ' ') } fn trim_multiline_inner(s: Cow<'_, str>, ignore_first: bool, indent: Option, ch: char) -> Cow<'_, str> { let mut x = s .lines() .skip(ignore_first as usize) .filter_map(|l| { if l.is_empty() { None } else { // ignore empty lines Some(l.char_indices().find(|&(_, x)| x != ch).unwrap_or((l.len(), ch)).0) } }) .min() .unwrap_or(0); if let Some(indent) = indent { x = x.saturating_sub(indent); } if x > 0 { Cow::Owned( s.lines() .enumerate() .map(|(i, l)| { if (ignore_first && i == 0) || l.is_empty() { l } else { l.split_at(x).1 } }) .collect::>() .join("\n"), ) } else { s } } /// Gets the parent expression, if any –- this is useful to constrain a lint. pub fn get_parent_expr<'c>(cx: &'c LateContext<'_>, e: &Expr<'_>) -> Option<&'c Expr<'c>> { let map = &cx.tcx.hir(); let hir_id = e.hir_id; let parent_id = map.get_parent_node(hir_id); if hir_id == parent_id { return None; } map.find(parent_id).and_then(|node| { if let Node::Expr(parent) = node { Some(parent) } else { None } }) } pub fn get_enclosing_block<'tcx>(cx: &LateContext<'tcx>, hir_id: HirId) -> Option<&'tcx Block<'tcx>> { let map = &cx.tcx.hir(); let enclosing_node = map .get_enclosing_scope(hir_id) .and_then(|enclosing_id| map.find(enclosing_id)); enclosing_node.and_then(|node| match node { Node::Block(block) => Some(block), Node::Item(&Item { kind: ItemKind::Fn(_, _, eid), .. }) | Node::ImplItem(&ImplItem { kind: ImplItemKind::Fn(_, eid), .. }) => match cx.tcx.hir().body(eid).value.kind { ExprKind::Block(ref block, _) => Some(block), _ => None, }, _ => None, }) } /// Returns the base type for HIR references and pointers. pub fn walk_ptrs_hir_ty<'tcx>(ty: &'tcx hir::Ty<'tcx>) -> &'tcx hir::Ty<'tcx> { match ty.kind { TyKind::Ptr(ref mut_ty) | TyKind::Rptr(_, ref mut_ty) => walk_ptrs_hir_ty(&mut_ty.ty), _ => ty, } } /// Returns the base type for references and raw pointers. pub fn walk_ptrs_ty(ty: Ty<'_>) -> Ty<'_> { match ty.kind { ty::Ref(_, ty, _) => walk_ptrs_ty(ty), _ => ty, } } /// Returns the base type for references and raw pointers, and count reference /// depth. pub fn walk_ptrs_ty_depth(ty: Ty<'_>) -> (Ty<'_>, usize) { fn inner(ty: Ty<'_>, depth: usize) -> (Ty<'_>, usize) { match ty.kind { ty::Ref(_, ty, _) => inner(ty, depth + 1), _ => (ty, depth), } } inner(ty, 0) } /// Checks whether the given expression is a constant integer of the given value. /// unlike `is_integer_literal`, this version does const folding pub fn is_integer_const(cx: &LateContext<'_>, e: &Expr<'_>, value: u128) -> bool { if is_integer_literal(e, value) { return true; } let map = cx.tcx.hir(); let parent_item = map.get_parent_item(e.hir_id); if let Some((Constant::Int(v), _)) = map .maybe_body_owned_by(parent_item) .and_then(|body_id| constant(cx, cx.tcx.typeck_body(body_id), e)) { value == v } else { false } } /// Checks whether the given expression is a constant literal of the given value. pub fn is_integer_literal(expr: &Expr<'_>, value: u128) -> bool { // FIXME: use constant folding if let ExprKind::Lit(ref spanned) = expr.kind { if let LitKind::Int(v, _) = spanned.node { return v == value; } } false } /// Returns `true` if the given `Expr` has been coerced before. /// /// Examples of coercions can be found in the Nomicon at /// . /// /// See `rustc_middle::ty::adjustment::Adjustment` and `rustc_typeck::check::coercion` for more /// information on adjustments and coercions. pub fn is_adjusted(cx: &LateContext<'_>, e: &Expr<'_>) -> bool { cx.typeck_results().adjustments().get(e.hir_id).is_some() } /// Returns the pre-expansion span if is this comes from an expansion of the /// macro `name`. /// See also `is_direct_expn_of`. #[must_use] pub fn is_expn_of(mut span: Span, name: &str) -> Option { loop { if span.from_expansion() { let data = span.ctxt().outer_expn_data(); let new_span = data.call_site; if let ExpnKind::Macro(MacroKind::Bang, mac_name) = data.kind { if mac_name.as_str() == name { return Some(new_span); } } span = new_span; } else { return None; } } } /// Returns the pre-expansion span if the span directly comes from an expansion /// of the macro `name`. /// The difference with `is_expn_of` is that in /// ```rust,ignore /// foo!(bar!(42)); /// ``` /// `42` is considered expanded from `foo!` and `bar!` by `is_expn_of` but only /// `bar!` by /// `is_direct_expn_of`. #[must_use] pub fn is_direct_expn_of(span: Span, name: &str) -> Option { if span.from_expansion() { let data = span.ctxt().outer_expn_data(); let new_span = data.call_site; if let ExpnKind::Macro(MacroKind::Bang, mac_name) = data.kind { if mac_name.as_str() == name { return Some(new_span); } } } None } /// Convenience function to get the return type of a function. pub fn return_ty<'tcx>(cx: &LateContext<'tcx>, fn_item: hir::HirId) -> Ty<'tcx> { let fn_def_id = cx.tcx.hir().local_def_id(fn_item); let ret_ty = cx.tcx.fn_sig(fn_def_id).output(); cx.tcx.erase_late_bound_regions(&ret_ty) } /// Returns `true` if the given type is an `unsafe` function. pub fn type_is_unsafe_function<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> bool { match ty.kind { ty::FnDef(..) | ty::FnPtr(_) => ty.fn_sig(cx.tcx).unsafety() == Unsafety::Unsafe, _ => false, } } pub fn is_copy<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> bool { ty.is_copy_modulo_regions(cx.tcx.at(DUMMY_SP), cx.param_env) } /// Checks if an expression is constructing a tuple-like enum variant or struct pub fn is_ctor_or_promotable_const_function(cx: &LateContext<'_>, expr: &Expr<'_>) -> bool { fn has_no_arguments(cx: &LateContext<'_>, def_id: DefId) -> bool { cx.tcx.fn_sig(def_id).skip_binder().inputs().is_empty() } if let ExprKind::Call(ref fun, _) = expr.kind { if let ExprKind::Path(ref qp) = fun.kind { let res = cx.qpath_res(qp, fun.hir_id); return match res { def::Res::Def(DefKind::Variant | DefKind::Ctor(..), ..) => true, // FIXME: check the constness of the arguments, see https://github.com/rust-lang/rust-clippy/pull/5682#issuecomment-638681210 def::Res::Def(DefKind::Fn, def_id) if has_no_arguments(cx, def_id) => { const_eval::is_const_fn(cx.tcx, def_id) }, def::Res::Def(_, def_id) => cx.tcx.is_promotable_const_fn(def_id), _ => false, }; } } false } /// Returns `true` if a pattern is refutable. // TODO: should be implemented using rustc/mir_build/thir machinery pub fn is_refutable(cx: &LateContext<'_>, pat: &Pat<'_>) -> bool { fn is_enum_variant(cx: &LateContext<'_>, qpath: &QPath<'_>, id: HirId) -> bool { matches!( cx.qpath_res(qpath, id), def::Res::Def(DefKind::Variant, ..) | Res::Def(DefKind::Ctor(def::CtorOf::Variant, _), _) ) } fn are_refutable<'a, I: Iterator>>(cx: &LateContext<'_>, mut i: I) -> bool { i.any(|pat| is_refutable(cx, pat)) } match pat.kind { PatKind::Wild => false, PatKind::Binding(_, _, _, pat) => pat.map_or(false, |pat| is_refutable(cx, pat)), PatKind::Box(ref pat) | PatKind::Ref(ref pat, _) => is_refutable(cx, pat), PatKind::Lit(..) | PatKind::Range(..) => true, PatKind::Path(ref qpath) => is_enum_variant(cx, qpath, pat.hir_id), PatKind::Or(ref pats) => { // TODO: should be the honest check, that pats is exhaustive set are_refutable(cx, pats.iter().map(|pat| &**pat)) }, PatKind::Tuple(ref pats, _) => are_refutable(cx, pats.iter().map(|pat| &**pat)), PatKind::Struct(ref qpath, ref fields, _) => { is_enum_variant(cx, qpath, pat.hir_id) || are_refutable(cx, fields.iter().map(|field| &*field.pat)) }, PatKind::TupleStruct(ref qpath, ref pats, _) => { is_enum_variant(cx, qpath, pat.hir_id) || are_refutable(cx, pats.iter().map(|pat| &**pat)) }, PatKind::Slice(ref head, ref middle, ref tail) => { match &cx.typeck_results().node_type(pat.hir_id).kind { ty::Slice(..) => { // [..] is the only irrefutable slice pattern. !head.is_empty() || middle.is_none() || !tail.is_empty() }, ty::Array(..) => are_refutable(cx, head.iter().chain(middle).chain(tail.iter()).map(|pat| &**pat)), _ => { // unreachable!() true }, } }, } } /// Checks for the `#[automatically_derived]` attribute all `#[derive]`d /// implementations have. pub fn is_automatically_derived(attrs: &[ast::Attribute]) -> bool { attrs.iter().any(|attr| attr.has_name(sym!(automatically_derived))) } /// Remove blocks around an expression. /// /// Ie. `x`, `{ x }` and `{{{{ x }}}}` all give `x`. `{ x; y }` and `{}` return /// themselves. pub fn remove_blocks<'tcx>(mut expr: &'tcx Expr<'tcx>) -> &'tcx Expr<'tcx> { while let ExprKind::Block(ref block, ..) = expr.kind { match (block.stmts.is_empty(), block.expr.as_ref()) { (true, Some(e)) => expr = e, _ => break, } } expr } pub fn is_self(slf: &Param<'_>) -> bool { if let PatKind::Binding(.., name, _) = slf.pat.kind { name.name == kw::SelfLower } else { false } } pub fn is_self_ty(slf: &hir::Ty<'_>) -> bool { if_chain! { if let TyKind::Path(ref qp) = slf.kind; if let QPath::Resolved(None, ref path) = *qp; if let Res::SelfTy(..) = path.res; then { return true } } false } pub fn iter_input_pats<'tcx>(decl: &FnDecl<'_>, body: &'tcx Body<'_>) -> impl Iterator> { (0..decl.inputs.len()).map(move |i| &body.params[i]) } /// Checks if a given expression is a match expression expanded from the `?` /// operator or the `try` macro. pub fn is_try<'tcx>(expr: &'tcx Expr<'tcx>) -> Option<&'tcx Expr<'tcx>> { fn is_ok(arm: &Arm<'_>) -> bool { if_chain! { if let PatKind::TupleStruct(ref path, ref pat, None) = arm.pat.kind; if match_qpath(path, &paths::RESULT_OK[1..]); if let PatKind::Binding(_, hir_id, _, None) = pat[0].kind; if let ExprKind::Path(QPath::Resolved(None, ref path)) = arm.body.kind; if let Res::Local(lid) = path.res; if lid == hir_id; then { return true; } } false } fn is_err(arm: &Arm<'_>) -> bool { if let PatKind::TupleStruct(ref path, _, _) = arm.pat.kind { match_qpath(path, &paths::RESULT_ERR[1..]) } else { false } } if let ExprKind::Match(_, ref arms, ref source) = expr.kind { // desugared from a `?` operator if let MatchSource::TryDesugar = *source { return Some(expr); } if_chain! { if arms.len() == 2; if arms[0].guard.is_none(); if arms[1].guard.is_none(); if (is_ok(&arms[0]) && is_err(&arms[1])) || (is_ok(&arms[1]) && is_err(&arms[0])); then { return Some(expr); } } } None } /// Returns `true` if the lint is allowed in the current context /// /// Useful for skipping long running code when it's unnecessary pub fn is_allowed(cx: &LateContext<'_>, lint: &'static Lint, id: HirId) -> bool { cx.tcx.lint_level_at_node(lint, id).0 == Level::Allow } pub fn get_arg_name(pat: &Pat<'_>) -> Option { match pat.kind { PatKind::Binding(.., ident, None) => Some(ident.name), PatKind::Ref(ref subpat, _) => get_arg_name(subpat), _ => None, } } pub fn int_bits(tcx: TyCtxt<'_>, ity: ast::IntTy) -> u64 { Integer::from_attr(&tcx, attr::IntType::SignedInt(ity)).size().bits() } #[allow(clippy::cast_possible_wrap)] /// Turn a constant int byte representation into an i128 pub fn sext(tcx: TyCtxt<'_>, u: u128, ity: ast::IntTy) -> i128 { let amt = 128 - int_bits(tcx, ity); ((u as i128) << amt) >> amt } #[allow(clippy::cast_sign_loss)] /// clip unused bytes pub fn unsext(tcx: TyCtxt<'_>, u: i128, ity: ast::IntTy) -> u128 { let amt = 128 - int_bits(tcx, ity); ((u as u128) << amt) >> amt } /// clip unused bytes pub fn clip(tcx: TyCtxt<'_>, u: u128, ity: ast::UintTy) -> u128 { let bits = Integer::from_attr(&tcx, attr::IntType::UnsignedInt(ity)).size().bits(); let amt = 128 - bits; (u << amt) >> amt } /// Removes block comments from the given `Vec` of lines. /// /// # Examples /// /// ```rust,ignore /// without_block_comments(vec!["/*", "foo", "*/"]); /// // => vec![] /// /// without_block_comments(vec!["bar", "/*", "foo", "*/"]); /// // => vec!["bar"] /// ``` pub fn without_block_comments(lines: Vec<&str>) -> Vec<&str> { let mut without = vec![]; let mut nest_level = 0; for line in lines { if line.contains("/*") { nest_level += 1; continue; } else if line.contains("*/") { nest_level -= 1; continue; } if nest_level == 0 { without.push(line); } } without } pub fn any_parent_is_automatically_derived(tcx: TyCtxt<'_>, node: HirId) -> bool { let map = &tcx.hir(); let mut prev_enclosing_node = None; let mut enclosing_node = node; while Some(enclosing_node) != prev_enclosing_node { if is_automatically_derived(map.attrs(enclosing_node)) { return true; } prev_enclosing_node = Some(enclosing_node); enclosing_node = map.get_parent_item(enclosing_node); } false } /// Returns true if ty has `iter` or `iter_mut` methods pub fn has_iter_method(cx: &LateContext<'_>, probably_ref_ty: Ty<'_>) -> Option<&'static str> { // FIXME: instead of this hard-coded list, we should check if `::iter` // exists and has the desired signature. Unfortunately FnCtxt is not exported // so we can't use its `lookup_method` method. let into_iter_collections: [&[&str]; 13] = [ &paths::VEC, &paths::OPTION, &paths::RESULT, &paths::BTREESET, &paths::BTREEMAP, &paths::VEC_DEQUE, &paths::LINKED_LIST, &paths::BINARY_HEAP, &paths::HASHSET, &paths::HASHMAP, &paths::PATH_BUF, &paths::PATH, &paths::RECEIVER, ]; let ty_to_check = match probably_ref_ty.kind { ty::Ref(_, ty_to_check, _) => ty_to_check, _ => probably_ref_ty, }; let def_id = match ty_to_check.kind { ty::Array(..) => return Some("array"), ty::Slice(..) => return Some("slice"), ty::Adt(adt, _) => adt.did, _ => return None, }; for path in &into_iter_collections { if match_def_path(cx, def_id, path) { return Some(*path.last().unwrap()); } } None } /// Matches a function call with the given path and returns the arguments. /// /// Usage: /// /// ```rust,ignore /// if let Some(args) = match_function_call(cx, begin_panic_call, &paths::BEGIN_PANIC); /// ``` pub fn match_function_call<'tcx>( cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>, path: &[&str], ) -> Option<&'tcx [Expr<'tcx>]> { if_chain! { if let ExprKind::Call(ref fun, ref args) = expr.kind; if let ExprKind::Path(ref qpath) = fun.kind; if let Some(fun_def_id) = cx.qpath_res(qpath, fun.hir_id).opt_def_id(); if match_def_path(cx, fun_def_id, path); then { return Some(&args) } }; None } /// Checks if `Ty` is normalizable. This function is useful /// to avoid crashes on `layout_of`. pub fn is_normalizable<'tcx>(cx: &LateContext<'tcx>, param_env: ty::ParamEnv<'tcx>, ty: Ty<'tcx>) -> bool { cx.tcx.infer_ctxt().enter(|infcx| { let cause = rustc_middle::traits::ObligationCause::dummy(); infcx.at(&cause, param_env).normalize(&ty).is_ok() }) } pub fn match_def_path<'tcx>(cx: &LateContext<'tcx>, did: DefId, syms: &[&str]) -> bool { // We have to convert `syms` to `&[Symbol]` here because rustc's `match_def_path` // accepts only that. We should probably move to Symbols in Clippy as well. let syms = syms.iter().map(|p| Symbol::intern(p)).collect::>(); cx.match_def_path(did, &syms) } /// Returns the list of condition expressions and the list of blocks in a /// sequence of `if/else`. /// E.g., this returns `([a, b], [c, d, e])` for the expression /// `if a { c } else if b { d } else { e }`. pub fn if_sequence<'tcx>( mut expr: &'tcx Expr<'tcx>, ) -> (SmallVec<[&'tcx Expr<'tcx>; 1]>, SmallVec<[&'tcx Block<'tcx>; 1]>) { let mut conds = SmallVec::new(); let mut blocks: SmallVec<[&Block<'_>; 1]> = SmallVec::new(); while let Some((ref cond, ref then_expr, ref else_expr)) = higher::if_block(&expr) { conds.push(&**cond); if let ExprKind::Block(ref block, _) = then_expr.kind { blocks.push(block); } else { panic!("ExprKind::If node is not an ExprKind::Block"); } if let Some(ref else_expr) = *else_expr { expr = else_expr; } else { break; } } // final `else {..}` if !blocks.is_empty() { if let ExprKind::Block(ref block, _) = expr.kind { blocks.push(&**block); } } (conds, blocks) } pub fn parent_node_is_if_expr(expr: &Expr<'_>, cx: &LateContext<'_>) -> bool { let map = cx.tcx.hir(); let parent_id = map.get_parent_node(expr.hir_id); let parent_node = map.get(parent_id); match parent_node { Node::Expr(e) => higher::if_block(&e).is_some(), Node::Arm(e) => higher::if_block(&e.body).is_some(), _ => false, } } // Finds the attribute with the given name, if any pub fn attr_by_name<'a>(attrs: &'a [Attribute], name: &'_ str) -> Option<&'a Attribute> { attrs .iter() .find(|attr| attr.ident().map_or(false, |ident| ident.as_str() == name)) } // Finds the `#[must_use]` attribute, if any pub fn must_use_attr(attrs: &[Attribute]) -> Option<&Attribute> { attr_by_name(attrs, "must_use") } // Returns whether the type has #[must_use] attribute pub fn is_must_use_ty<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> bool { match ty.kind { ty::Adt(ref adt, _) => must_use_attr(&cx.tcx.get_attrs(adt.did)).is_some(), ty::Foreign(ref did) => must_use_attr(&cx.tcx.get_attrs(*did)).is_some(), ty::Slice(ref ty) | ty::Array(ref ty, _) | ty::RawPtr(ty::TypeAndMut { ref ty, .. }) | ty::Ref(_, ref ty, _) => { // for the Array case we don't need to care for the len == 0 case // because we don't want to lint functions returning empty arrays is_must_use_ty(cx, *ty) }, ty::Tuple(ref substs) => substs.types().any(|ty| is_must_use_ty(cx, ty)), ty::Opaque(ref def_id, _) => { for (predicate, _) in cx.tcx.predicates_of(*def_id).predicates { if let ty::PredicateAtom::Trait(trait_predicate, _) = predicate.skip_binders() { if must_use_attr(&cx.tcx.get_attrs(trait_predicate.trait_ref.def_id)).is_some() { return true; } } } false }, ty::Dynamic(binder, _) => { for predicate in binder.skip_binder().iter() { if let ty::ExistentialPredicate::Trait(ref trait_ref) = predicate { if must_use_attr(&cx.tcx.get_attrs(trait_ref.def_id)).is_some() { return true; } } } false }, _ => false, } } // check if expr is calling method or function with #[must_use] attribyte pub fn is_must_use_func_call(cx: &LateContext<'_>, expr: &Expr<'_>) -> bool { let did = match expr.kind { ExprKind::Call(ref path, _) => if_chain! { if let ExprKind::Path(ref qpath) = path.kind; if let def::Res::Def(_, did) = cx.qpath_res(qpath, path.hir_id); then { Some(did) } else { None } }, ExprKind::MethodCall(_, _, _, _) => cx.typeck_results().type_dependent_def_id(expr.hir_id), _ => None, }; did.map_or(false, |did| must_use_attr(&cx.tcx.get_attrs(did)).is_some()) } pub fn is_no_std_crate(krate: &Crate<'_>) -> bool { krate.item.attrs.iter().any(|attr| { if let ast::AttrKind::Normal(ref attr) = attr.kind { attr.path == symbol::sym::no_std } else { false } }) } /// Check if parent of a hir node is a trait implementation block. /// For example, `f` in /// ```rust,ignore /// impl Trait for S { /// fn f() {} /// } /// ``` pub fn is_trait_impl_item(cx: &LateContext<'_>, hir_id: HirId) -> bool { if let Some(Node::Item(item)) = cx.tcx.hir().find(cx.tcx.hir().get_parent_node(hir_id)) { matches!(item.kind, ItemKind::Impl{ of_trait: Some(_), .. }) } else { false } } /// Check if it's even possible to satisfy the `where` clause for the item. /// /// `trivial_bounds` feature allows functions with unsatisfiable bounds, for example: /// /// ```ignore /// fn foo() where i32: Iterator { /// for _ in 2i32 {} /// } /// ``` pub fn fn_has_unsatisfiable_preds(cx: &LateContext<'_>, did: DefId) -> bool { use rustc_trait_selection::traits; let predicates = cx.tcx .predicates_of(did) .predicates .iter() .filter_map(|(p, _)| if p.is_global() { Some(*p) } else { None }); traits::impossible_predicates( cx.tcx, traits::elaborate_predicates(cx.tcx, predicates) .map(|o| o.predicate) .collect::>(), ) } /// Returns the `DefId` of the callee if the given expression is a function or method call. pub fn fn_def_id(cx: &LateContext<'_>, expr: &Expr<'_>) -> Option { match &expr.kind { ExprKind::MethodCall(..) => cx.typeck_results().type_dependent_def_id(expr.hir_id), ExprKind::Call( Expr { kind: ExprKind::Path(qpath), .. }, .., ) => cx.typeck_results().qpath_res(qpath, expr.hir_id).opt_def_id(), _ => None, } } pub fn run_lints(cx: &LateContext<'_>, lints: &[&'static Lint], id: HirId) -> bool { lints.iter().any(|lint| { matches!( cx.tcx.lint_level_at_node(lint, id), (Level::Forbid | Level::Deny | Level::Warn, _) ) }) } /// Returns true iff the given type is a primitive (a bool or char, any integer or floating-point /// number type, a str, or an array, slice, or tuple of those types). pub fn is_recursively_primitive_type(ty: Ty<'_>) -> bool { match ty.kind { ty::Bool | ty::Char | ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Str => true, ty::Ref(_, inner, _) if inner.kind == ty::Str => true, ty::Array(inner_type, _) | ty::Slice(inner_type) => is_recursively_primitive_type(inner_type), ty::Tuple(inner_types) => inner_types.types().all(is_recursively_primitive_type), _ => false, } } /// Returns true iff the given expression is a slice of primitives (as defined in the /// `is_recursively_primitive_type` function). pub fn is_slice_of_primitives(cx: &LateContext<'_>, expr: &Expr<'_>) -> bool { let expr_type = cx.typeck_results().expr_ty_adjusted(expr); match expr_type.kind { ty::Slice(ref element_type) | ty::Ref( _, ty::TyS { kind: ty::Slice(ref element_type), .. }, _, ) => is_recursively_primitive_type(element_type), _ => false, } } #[macro_export] macro_rules! unwrap_cargo_metadata { ($cx: ident, $lint: ident, $deps: expr) => {{ let mut command = cargo_metadata::MetadataCommand::new(); if !$deps { command.no_deps(); } match command.exec() { Ok(metadata) => metadata, Err(err) => { span_lint($cx, $lint, DUMMY_SP, &format!("could not read cargo metadata: {}", err)); return; }, } }}; } #[cfg(test)] mod test { use super::{trim_multiline, without_block_comments}; #[test] fn test_trim_multiline_single_line() { assert_eq!("", trim_multiline("".into(), false, None)); assert_eq!("...", trim_multiline("...".into(), false, None)); assert_eq!("...", trim_multiline(" ...".into(), false, None)); assert_eq!("...", trim_multiline("\t...".into(), false, None)); assert_eq!("...", trim_multiline("\t\t...".into(), false, None)); } #[test] #[rustfmt::skip] fn test_trim_multiline_block() { assert_eq!("\ if x { y } else { z }", trim_multiline(" if x { y } else { z }".into(), false, None)); assert_eq!("\ if x { \ty } else { \tz }", trim_multiline(" if x { \ty } else { \tz }".into(), false, None)); } #[test] #[rustfmt::skip] fn test_trim_multiline_empty_line() { assert_eq!("\ if x { y } else { z }", trim_multiline(" if x { y } else { z }".into(), false, None)); } #[test] fn test_without_block_comments_lines_without_block_comments() { let result = without_block_comments(vec!["/*", "", "*/"]); println!("result: {:?}", result); assert!(result.is_empty()); let result = without_block_comments(vec!["", "/*", "", "*/", "#[crate_type = \"lib\"]", "/*", "", "*/", ""]); assert_eq!(result, vec!["", "#[crate_type = \"lib\"]", ""]); let result = without_block_comments(vec!["/* rust", "", "*/"]); assert!(result.is_empty()); let result = without_block_comments(vec!["/* one-line comment */"]); assert!(result.is_empty()); let result = without_block_comments(vec!["/* nested", "/* multi-line", "comment", "*/", "test", "*/"]); assert!(result.is_empty()); let result = without_block_comments(vec!["/* nested /* inline /* comment */ test */ */"]); assert!(result.is_empty()); let result = without_block_comments(vec!["foo", "bar", "baz"]); assert_eq!(result, vec!["foo", "bar", "baz"]); } }