mod bind_instead_of_map; mod inefficient_to_string; mod manual_saturating_arithmetic; mod option_map_unwrap_or; mod unnecessary_filter_map; mod unnecessary_lazy_eval; use std::borrow::Cow; use std::fmt; use std::iter; use bind_instead_of_map::BindInsteadOfMap; use if_chain::if_chain; use rustc_ast::ast; use rustc_errors::Applicability; use rustc_hir as hir; use rustc_hir::intravisit::{self, Visitor}; use rustc_lint::{LateContext, LateLintPass, Lint, LintContext}; use rustc_middle::hir::map::Map; use rustc_middle::lint::in_external_macro; use rustc_middle::ty::subst::GenericArgKind; use rustc_middle::ty::{self, Ty, TyS}; use rustc_session::{declare_lint_pass, declare_tool_lint}; use rustc_span::source_map::Span; use rustc_span::symbol::{sym, SymbolStr}; use crate::consts::{constant, Constant}; use crate::utils::usage::mutated_variables; use crate::utils::{ get_arg_name, get_parent_expr, get_trait_def_id, has_iter_method, higher, implements_trait, in_macro, is_copy, is_ctor_or_promotable_const_function, is_expn_of, is_type_diagnostic_item, iter_input_pats, last_path_segment, match_def_path, match_qpath, match_trait_method, match_type, match_var, method_calls, method_chain_args, paths, remove_blocks, return_ty, single_segment_path, snippet, snippet_with_applicability, snippet_with_macro_callsite, span_lint, span_lint_and_help, span_lint_and_note, span_lint_and_sugg, span_lint_and_then, sugg, walk_ptrs_ty, walk_ptrs_ty_depth, SpanlessEq, }; declare_clippy_lint! { /// **What it does:** Checks for `.unwrap()` calls on `Option`s and on `Result`s. /// /// **Why is this bad?** It is better to handle the `None` or `Err` case, /// or at least call `.expect(_)` with a more helpful message. Still, for a lot of /// quick-and-dirty code, `unwrap` is a good choice, which is why this lint is /// `Allow` by default. /// /// `result.unwrap()` will let the thread panic on `Err` values. /// Normally, you want to implement more sophisticated error handling, /// and propagate errors upwards with `?` operator. /// /// Even if you want to panic on errors, not all `Error`s implement good /// messages on display. Therefore, it may be beneficial to look at the places /// where they may get displayed. Activate this lint to do just that. /// /// **Known problems:** None. /// /// **Examples:** /// ```rust /// # let opt = Some(1); /// /// // Bad /// opt.unwrap(); /// /// // Good /// opt.expect("more helpful message"); /// ``` /// /// // or /// /// ```rust /// # let res: Result = Ok(1); /// /// // Bad /// res.unwrap(); /// /// // Good /// res.expect("more helpful message"); /// ``` pub UNWRAP_USED, restriction, "using `.unwrap()` on `Result` or `Option`, which should at least get a better message using `expect()`" } declare_clippy_lint! { /// **What it does:** Checks for `.expect()` calls on `Option`s and `Result`s. /// /// **Why is this bad?** Usually it is better to handle the `None` or `Err` case. /// Still, for a lot of quick-and-dirty code, `expect` is a good choice, which is why /// this lint is `Allow` by default. /// /// `result.expect()` will let the thread panic on `Err` /// values. Normally, you want to implement more sophisticated error handling, /// and propagate errors upwards with `?` operator. /// /// **Known problems:** None. /// /// **Examples:** /// ```rust,ignore /// # let opt = Some(1); /// /// // Bad /// opt.expect("one"); /// /// // Good /// let opt = Some(1); /// opt?; /// ``` /// /// // or /// /// ```rust /// # let res: Result = Ok(1); /// /// // Bad /// res.expect("one"); /// /// // Good /// res?; /// # Ok::<(), ()>(()) /// ``` pub EXPECT_USED, restriction, "using `.expect()` on `Result` or `Option`, which might be better handled" } declare_clippy_lint! { /// **What it does:** Checks for methods that should live in a trait /// implementation of a `std` trait (see [llogiq's blog /// post](http://llogiq.github.io/2015/07/30/traits.html) for further /// information) instead of an inherent implementation. /// /// **Why is this bad?** Implementing the traits improve ergonomics for users of /// the code, often with very little cost. Also people seeing a `mul(...)` /// method /// may expect `*` to work equally, so you should have good reason to disappoint /// them. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// struct X; /// impl X { /// fn add(&self, other: &X) -> X { /// // .. /// # X /// } /// } /// ``` pub SHOULD_IMPLEMENT_TRAIT, style, "defining a method that should be implementing a std trait" } declare_clippy_lint! { /// **What it does:** Checks for methods with certain name prefixes and which /// doesn't match how self is taken. The actual rules are: /// /// |Prefix |`self` taken | /// |-------|----------------------| /// |`as_` |`&self` or `&mut self`| /// |`from_`| none | /// |`into_`|`self` | /// |`is_` |`&self` or none | /// |`to_` |`&self` | /// /// **Why is this bad?** Consistency breeds readability. If you follow the /// conventions, your users won't be surprised that they, e.g., need to supply a /// mutable reference to a `as_..` function. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// # struct X; /// impl X { /// fn as_str(self) -> &'static str { /// // .. /// # "" /// } /// } /// ``` pub WRONG_SELF_CONVENTION, style, "defining a method named with an established prefix (like \"into_\") that takes `self` with the wrong convention" } declare_clippy_lint! { /// **What it does:** This is the same as /// [`wrong_self_convention`](#wrong_self_convention), but for public items. /// /// **Why is this bad?** See [`wrong_self_convention`](#wrong_self_convention). /// /// **Known problems:** Actually *renaming* the function may break clients if /// the function is part of the public interface. In that case, be mindful of /// the stability guarantees you've given your users. /// /// **Example:** /// ```rust /// # struct X; /// impl<'a> X { /// pub fn as_str(self) -> &'a str { /// "foo" /// } /// } /// ``` pub WRONG_PUB_SELF_CONVENTION, restriction, "defining a public method named with an established prefix (like \"into_\") that takes `self` with the wrong convention" } declare_clippy_lint! { /// **What it does:** Checks for usage of `ok().expect(..)`. /// /// **Why is this bad?** Because you usually call `expect()` on the `Result` /// directly to get a better error message. /// /// **Known problems:** The error type needs to implement `Debug` /// /// **Example:** /// ```rust /// # let x = Ok::<_, ()>(()); /// /// // Bad /// x.ok().expect("why did I do this again?"); /// /// // Good /// x.expect("why did I do this again?"); /// ``` pub OK_EXPECT, style, "using `ok().expect()`, which gives worse error messages than calling `expect` directly on the Result" } declare_clippy_lint! { /// **What it does:** Checks for usage of `option.map(_).unwrap_or(_)` or `option.map(_).unwrap_or_else(_)` or /// `result.map(_).unwrap_or_else(_)`. /// /// **Why is this bad?** Readability, these can be written more concisely (resp.) as /// `option.map_or(_, _)`, `option.map_or_else(_, _)` and `result.map_or_else(_, _)`. /// /// **Known problems:** The order of the arguments is not in execution order /// /// **Examples:** /// ```rust /// # let x = Some(1); /// /// // Bad /// x.map(|a| a + 1).unwrap_or(0); /// /// // Good /// x.map_or(0, |a| a + 1); /// ``` /// /// // or /// /// ```rust /// # let x: Result = Ok(1); /// # fn some_function(foo: ()) -> usize { 1 } /// /// // Bad /// x.map(|a| a + 1).unwrap_or_else(some_function); /// /// // Good /// x.map_or_else(some_function, |a| a + 1); /// ``` pub MAP_UNWRAP_OR, pedantic, "using `.map(f).unwrap_or(a)` or `.map(f).unwrap_or_else(func)`, which are more succinctly expressed as `map_or(a, f)` or `map_or_else(a, f)`" } declare_clippy_lint! { /// **What it does:** Checks for usage of `_.map_or(None, _)`. /// /// **Why is this bad?** Readability, this can be written more concisely as /// `_.and_then(_)`. /// /// **Known problems:** The order of the arguments is not in execution order. /// /// **Example:** /// ```rust /// # let opt = Some(1); /// /// // Bad /// opt.map_or(None, |a| Some(a + 1)); /// /// // Good /// opt.and_then(|a| Some(a + 1)); /// ``` pub OPTION_MAP_OR_NONE, style, "using `Option.map_or(None, f)`, which is more succinctly expressed as `and_then(f)`" } declare_clippy_lint! { /// **What it does:** Checks for usage of `_.map_or(None, Some)`. /// /// **Why is this bad?** Readability, this can be written more concisely as /// `_.ok()`. /// /// **Known problems:** None. /// /// **Example:** /// /// Bad: /// ```rust /// # let r: Result = Ok(1); /// assert_eq!(Some(1), r.map_or(None, Some)); /// ``` /// /// Good: /// ```rust /// # let r: Result = Ok(1); /// assert_eq!(Some(1), r.ok()); /// ``` pub RESULT_MAP_OR_INTO_OPTION, style, "using `Result.map_or(None, Some)`, which is more succinctly expressed as `ok()`" } declare_clippy_lint! { /// **What it does:** Checks for usage of `_.and_then(|x| Some(y))`, `_.and_then(|x| Ok(y))` or /// `_.or_else(|x| Err(y))`. /// /// **Why is this bad?** Readability, this can be written more concisely as /// `_.map(|x| y)` or `_.map_err(|x| y)`. /// /// **Known problems:** None /// /// **Example:** /// /// ```rust /// # fn opt() -> Option<&'static str> { Some("42") } /// # fn res() -> Result<&'static str, &'static str> { Ok("42") } /// let _ = opt().and_then(|s| Some(s.len())); /// let _ = res().and_then(|s| if s.len() == 42 { Ok(10) } else { Ok(20) }); /// let _ = res().or_else(|s| if s.len() == 42 { Err(10) } else { Err(20) }); /// ``` /// /// The correct use would be: /// /// ```rust /// # fn opt() -> Option<&'static str> { Some("42") } /// # fn res() -> Result<&'static str, &'static str> { Ok("42") } /// let _ = opt().map(|s| s.len()); /// let _ = res().map(|s| if s.len() == 42 { 10 } else { 20 }); /// let _ = res().map_err(|s| if s.len() == 42 { 10 } else { 20 }); /// ``` pub BIND_INSTEAD_OF_MAP, complexity, "using `Option.and_then(|x| Some(y))`, which is more succinctly expressed as `map(|x| y)`" } declare_clippy_lint! { /// **What it does:** Checks for usage of `_.filter(_).next()`. /// /// **Why is this bad?** Readability, this can be written more concisely as /// `_.find(_)`. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// # let vec = vec![1]; /// vec.iter().filter(|x| **x == 0).next(); /// ``` /// Could be written as /// ```rust /// # let vec = vec![1]; /// vec.iter().find(|x| **x == 0); /// ``` pub FILTER_NEXT, complexity, "using `filter(p).next()`, which is more succinctly expressed as `.find(p)`" } declare_clippy_lint! { /// **What it does:** Checks for usage of `_.skip_while(condition).next()`. /// /// **Why is this bad?** Readability, this can be written more concisely as /// `_.find(!condition)`. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// # let vec = vec![1]; /// vec.iter().skip_while(|x| **x == 0).next(); /// ``` /// Could be written as /// ```rust /// # let vec = vec![1]; /// vec.iter().find(|x| **x != 0); /// ``` pub SKIP_WHILE_NEXT, complexity, "using `skip_while(p).next()`, which is more succinctly expressed as `.find(!p)`" } declare_clippy_lint! { /// **What it does:** Checks for usage of `_.map(_).flatten(_)`, /// /// **Why is this bad?** Readability, this can be written more concisely as a /// single method call using `_.flat_map(_)` /// /// **Known problems:** /// /// **Example:** /// ```rust /// let vec = vec![vec![1]]; /// /// // Bad /// vec.iter().map(|x| x.iter()).flatten(); /// /// // Good /// vec.iter().flat_map(|x| x.iter()); /// ``` pub MAP_FLATTEN, pedantic, "using combinations of `flatten` and `map` which can usually be written as a single method call" } declare_clippy_lint! { /// **What it does:** Checks for usage of `_.filter(_).map(_)`, /// `_.filter(_).flat_map(_)`, `_.filter_map(_).flat_map(_)` and similar. /// /// **Why is this bad?** Readability, this can be written more concisely as a /// single method call. /// /// **Known problems:** Often requires a condition + Option/Iterator creation /// inside the closure. /// /// **Example:** /// ```rust /// let vec = vec![1]; /// /// // Bad /// vec.iter().filter(|x| **x == 0).map(|x| *x * 2); /// /// // Good /// vec.iter().filter_map(|x| if *x == 0 { /// Some(*x * 2) /// } else { /// None /// }); /// ``` pub FILTER_MAP, pedantic, "using combinations of `filter`, `map`, `filter_map` and `flat_map` which can usually be written as a single method call" } declare_clippy_lint! { /// **What it does:** Checks for usage of `_.filter_map(_).next()`. /// /// **Why is this bad?** Readability, this can be written more concisely as a /// single method call. /// /// **Known problems:** None /// /// **Example:** /// ```rust /// (0..3).filter_map(|x| if x == 2 { Some(x) } else { None }).next(); /// ``` /// Can be written as /// /// ```rust /// (0..3).find_map(|x| if x == 2 { Some(x) } else { None }); /// ``` pub FILTER_MAP_NEXT, pedantic, "using combination of `filter_map` and `next` which can usually be written as a single method call" } declare_clippy_lint! { /// **What it does:** Checks for usage of `flat_map(|x| x)`. /// /// **Why is this bad?** Readability, this can be written more concisely by using `flatten`. /// /// **Known problems:** None /// /// **Example:** /// ```rust /// # let iter = vec![vec![0]].into_iter(); /// iter.flat_map(|x| x); /// ``` /// Can be written as /// ```rust /// # let iter = vec![vec![0]].into_iter(); /// iter.flatten(); /// ``` pub FLAT_MAP_IDENTITY, complexity, "call to `flat_map` where `flatten` is sufficient" } declare_clippy_lint! { /// **What it does:** Checks for usage of `_.find(_).map(_)`. /// /// **Why is this bad?** Readability, this can be written more concisely as a /// single method call. /// /// **Known problems:** Often requires a condition + Option/Iterator creation /// inside the closure. /// /// **Example:** /// ```rust /// (0..3).find(|x| *x == 2).map(|x| x * 2); /// ``` /// Can be written as /// ```rust /// (0..3).find_map(|x| if x == 2 { Some(x * 2) } else { None }); /// ``` pub FIND_MAP, pedantic, "using a combination of `find` and `map` can usually be written as a single method call" } declare_clippy_lint! { /// **What it does:** Checks for an iterator search (such as `find()`, /// `position()`, or `rposition()`) followed by a call to `is_some()`. /// /// **Why is this bad?** Readability, this can be written more concisely as /// `_.any(_)`. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// # let vec = vec![1]; /// vec.iter().find(|x| **x == 0).is_some(); /// ``` /// Could be written as /// ```rust /// # let vec = vec![1]; /// vec.iter().any(|x| *x == 0); /// ``` pub SEARCH_IS_SOME, complexity, "using an iterator search followed by `is_some()`, which is more succinctly expressed as a call to `any()`" } declare_clippy_lint! { /// **What it does:** Checks for usage of `.chars().next()` on a `str` to check /// if it starts with a given char. /// /// **Why is this bad?** Readability, this can be written more concisely as /// `_.starts_with(_)`. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// let name = "foo"; /// if name.chars().next() == Some('_') {}; /// ``` /// Could be written as /// ```rust /// let name = "foo"; /// if name.starts_with('_') {}; /// ``` pub CHARS_NEXT_CMP, style, "using `.chars().next()` to check if a string starts with a char" } declare_clippy_lint! { /// **What it does:** Checks for calls to `.or(foo(..))`, `.unwrap_or(foo(..))`, /// etc., and suggests to use `or_else`, `unwrap_or_else`, etc., or /// `unwrap_or_default` instead. /// /// **Why is this bad?** The function will always be called and potentially /// allocate an object acting as the default. /// /// **Known problems:** If the function has side-effects, not calling it will /// change the semantic of the program, but you shouldn't rely on that anyway. /// /// **Example:** /// ```rust /// # let foo = Some(String::new()); /// foo.unwrap_or(String::new()); /// ``` /// this can instead be written: /// ```rust /// # let foo = Some(String::new()); /// foo.unwrap_or_else(String::new); /// ``` /// or /// ```rust /// # let foo = Some(String::new()); /// foo.unwrap_or_default(); /// ``` pub OR_FUN_CALL, perf, "using any `*or` method with a function call, which suggests `*or_else`" } declare_clippy_lint! { /// **What it does:** Checks for calls to `.expect(&format!(...))`, `.expect(foo(..))`, /// etc., and suggests to use `unwrap_or_else` instead /// /// **Why is this bad?** The function will always be called. /// /// **Known problems:** If the function has side-effects, not calling it will /// change the semantics of the program, but you shouldn't rely on that anyway. /// /// **Example:** /// ```rust /// # let foo = Some(String::new()); /// # let err_code = "418"; /// # let err_msg = "I'm a teapot"; /// foo.expect(&format!("Err {}: {}", err_code, err_msg)); /// ``` /// or /// ```rust /// # let foo = Some(String::new()); /// # let err_code = "418"; /// # let err_msg = "I'm a teapot"; /// foo.expect(format!("Err {}: {}", err_code, err_msg).as_str()); /// ``` /// this can instead be written: /// ```rust /// # let foo = Some(String::new()); /// # let err_code = "418"; /// # let err_msg = "I'm a teapot"; /// foo.unwrap_or_else(|| panic!("Err {}: {}", err_code, err_msg)); /// ``` pub EXPECT_FUN_CALL, perf, "using any `expect` method with a function call" } declare_clippy_lint! { /// **What it does:** Checks for usage of `.clone()` on a `Copy` type. /// /// **Why is this bad?** The only reason `Copy` types implement `Clone` is for /// generics, not for using the `clone` method on a concrete type. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// 42u64.clone(); /// ``` pub CLONE_ON_COPY, complexity, "using `clone` on a `Copy` type" } declare_clippy_lint! { /// **What it does:** Checks for usage of `.clone()` on a ref-counted pointer, /// (`Rc`, `Arc`, `rc::Weak`, or `sync::Weak`), and suggests calling Clone via unified /// function syntax instead (e.g., `Rc::clone(foo)`). /// /// **Why is this bad?** Calling '.clone()' on an Rc, Arc, or Weak /// can obscure the fact that only the pointer is being cloned, not the underlying /// data. /// /// **Example:** /// ```rust /// # use std::rc::Rc; /// let x = Rc::new(1); /// /// // Bad /// x.clone(); /// /// // Good /// Rc::clone(&x); /// ``` pub CLONE_ON_REF_PTR, restriction, "using 'clone' on a ref-counted pointer" } declare_clippy_lint! { /// **What it does:** Checks for usage of `.clone()` on an `&&T`. /// /// **Why is this bad?** Cloning an `&&T` copies the inner `&T`, instead of /// cloning the underlying `T`. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// fn main() { /// let x = vec![1]; /// let y = &&x; /// let z = y.clone(); /// println!("{:p} {:p}", *y, z); // prints out the same pointer /// } /// ``` pub CLONE_DOUBLE_REF, correctness, "using `clone` on `&&T`" } declare_clippy_lint! { /// **What it does:** Checks for usage of `.to_string()` on an `&&T` where /// `T` implements `ToString` directly (like `&&str` or `&&String`). /// /// **Why is this bad?** This bypasses the specialized implementation of /// `ToString` and instead goes through the more expensive string formatting /// facilities. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// // Generic implementation for `T: Display` is used (slow) /// ["foo", "bar"].iter().map(|s| s.to_string()); /// /// // OK, the specialized impl is used /// ["foo", "bar"].iter().map(|&s| s.to_string()); /// ``` pub INEFFICIENT_TO_STRING, pedantic, "using `to_string` on `&&T` where `T: ToString`" } declare_clippy_lint! { /// **What it does:** Checks for `new` not returning a type that contains `Self`. /// /// **Why is this bad?** As a convention, `new` methods are used to make a new /// instance of a type. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// # struct Foo; /// # struct NotAFoo; /// impl Foo { /// fn new() -> NotAFoo { /// # NotAFoo /// } /// } /// ``` /// /// ```rust /// # struct Foo; /// # struct FooError; /// impl Foo { /// // Good. Return type contains `Self` /// fn new() -> Result { /// # Ok(Foo) /// } /// } /// ``` /// /// ```rust /// # struct Foo; /// struct Bar(Foo); /// impl Foo { /// // Bad. The type name must contain `Self`. /// fn new() -> Bar { /// # Bar(Foo) /// } /// } /// ``` pub NEW_RET_NO_SELF, style, "not returning type containing `Self` in a `new` method" } declare_clippy_lint! { /// **What it does:** Checks for string methods that receive a single-character /// `str` as an argument, e.g., `_.split("x")`. /// /// **Why is this bad?** Performing these methods using a `char` is faster than /// using a `str`. /// /// **Known problems:** Does not catch multi-byte unicode characters. /// /// **Example:** /// ```rust,ignore /// // Bad /// _.split("x"); /// /// // Good /// _.split('x'); pub SINGLE_CHAR_PATTERN, perf, "using a single-character str where a char could be used, e.g., `_.split(\"x\")`" } declare_clippy_lint! { /// **What it does:** Checks for getting the inner pointer of a temporary /// `CString`. /// /// **Why is this bad?** The inner pointer of a `CString` is only valid as long /// as the `CString` is alive. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// # use std::ffi::CString; /// # fn call_some_ffi_func(_: *const i8) {} /// # /// let c_str = CString::new("foo").unwrap().as_ptr(); /// unsafe { /// call_some_ffi_func(c_str); /// } /// ``` /// Here `c_str` points to a freed address. The correct use would be: /// ```rust /// # use std::ffi::CString; /// # fn call_some_ffi_func(_: *const i8) {} /// # /// let c_str = CString::new("foo").unwrap(); /// unsafe { /// call_some_ffi_func(c_str.as_ptr()); /// } /// ``` pub TEMPORARY_CSTRING_AS_PTR, correctness, "getting the inner pointer of a temporary `CString`" } declare_clippy_lint! { /// **What it does:** Checks for calling `.step_by(0)` on iterators which panics. /// /// **Why is this bad?** This very much looks like an oversight. Use `panic!()` instead if you /// actually intend to panic. /// /// **Known problems:** None. /// /// **Example:** /// ```rust,should_panic /// for x in (0..100).step_by(0) { /// //.. /// } /// ``` pub ITERATOR_STEP_BY_ZERO, correctness, "using `Iterator::step_by(0)`, which will panic at runtime" } declare_clippy_lint! { /// **What it does:** Checks for the use of `iter.nth(0)`. /// /// **Why is this bad?** `iter.next()` is equivalent to /// `iter.nth(0)`, as they both consume the next element, /// but is more readable. /// /// **Known problems:** None. /// /// **Example:** /// /// ```rust /// # use std::collections::HashSet; /// // Bad /// # let mut s = HashSet::new(); /// # s.insert(1); /// let x = s.iter().nth(0); /// /// // Good /// # let mut s = HashSet::new(); /// # s.insert(1); /// let x = s.iter().next(); /// ``` pub ITER_NTH_ZERO, style, "replace `iter.nth(0)` with `iter.next()`" } declare_clippy_lint! { /// **What it does:** Checks for use of `.iter().nth()` (and the related /// `.iter_mut().nth()`) on standard library types with O(1) element access. /// /// **Why is this bad?** `.get()` and `.get_mut()` are more efficient and more /// readable. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// let some_vec = vec![0, 1, 2, 3]; /// let bad_vec = some_vec.iter().nth(3); /// let bad_slice = &some_vec[..].iter().nth(3); /// ``` /// The correct use would be: /// ```rust /// let some_vec = vec![0, 1, 2, 3]; /// let bad_vec = some_vec.get(3); /// let bad_slice = &some_vec[..].get(3); /// ``` pub ITER_NTH, perf, "using `.iter().nth()` on a standard library type with O(1) element access" } declare_clippy_lint! { /// **What it does:** Checks for use of `.skip(x).next()` on iterators. /// /// **Why is this bad?** `.nth(x)` is cleaner /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// let some_vec = vec![0, 1, 2, 3]; /// let bad_vec = some_vec.iter().skip(3).next(); /// let bad_slice = &some_vec[..].iter().skip(3).next(); /// ``` /// The correct use would be: /// ```rust /// let some_vec = vec![0, 1, 2, 3]; /// let bad_vec = some_vec.iter().nth(3); /// let bad_slice = &some_vec[..].iter().nth(3); /// ``` pub ITER_SKIP_NEXT, style, "using `.skip(x).next()` on an iterator" } declare_clippy_lint! { /// **What it does:** Checks for use of `.get().unwrap()` (or /// `.get_mut().unwrap`) on a standard library type which implements `Index` /// /// **Why is this bad?** Using the Index trait (`[]`) is more clear and more /// concise. /// /// **Known problems:** Not a replacement for error handling: Using either /// `.unwrap()` or the Index trait (`[]`) carries the risk of causing a `panic` /// if the value being accessed is `None`. If the use of `.get().unwrap()` is a /// temporary placeholder for dealing with the `Option` type, then this does /// not mitigate the need for error handling. If there is a chance that `.get()` /// will be `None` in your program, then it is advisable that the `None` case /// is handled in a future refactor instead of using `.unwrap()` or the Index /// trait. /// /// **Example:** /// ```rust /// let mut some_vec = vec![0, 1, 2, 3]; /// let last = some_vec.get(3).unwrap(); /// *some_vec.get_mut(0).unwrap() = 1; /// ``` /// The correct use would be: /// ```rust /// let mut some_vec = vec![0, 1, 2, 3]; /// let last = some_vec[3]; /// some_vec[0] = 1; /// ``` pub GET_UNWRAP, restriction, "using `.get().unwrap()` or `.get_mut().unwrap()` when using `[]` would work instead" } declare_clippy_lint! { /// **What it does:** Checks for the use of `.extend(s.chars())` where s is a /// `&str` or `String`. /// /// **Why is this bad?** `.push_str(s)` is clearer /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// let abc = "abc"; /// let def = String::from("def"); /// let mut s = String::new(); /// s.extend(abc.chars()); /// s.extend(def.chars()); /// ``` /// The correct use would be: /// ```rust /// let abc = "abc"; /// let def = String::from("def"); /// let mut s = String::new(); /// s.push_str(abc); /// s.push_str(&def); /// ``` pub STRING_EXTEND_CHARS, style, "using `x.extend(s.chars())` where s is a `&str` or `String`" } declare_clippy_lint! { /// **What it does:** Checks for the use of `.cloned().collect()` on slice to /// create a `Vec`. /// /// **Why is this bad?** `.to_vec()` is clearer /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// let s = [1, 2, 3, 4, 5]; /// let s2: Vec = s[..].iter().cloned().collect(); /// ``` /// The better use would be: /// ```rust /// let s = [1, 2, 3, 4, 5]; /// let s2: Vec = s.to_vec(); /// ``` pub ITER_CLONED_COLLECT, style, "using `.cloned().collect()` on slice to create a `Vec`" } declare_clippy_lint! { /// **What it does:** Checks for usage of `_.chars().last()` or /// `_.chars().next_back()` on a `str` to check if it ends with a given char. /// /// **Why is this bad?** Readability, this can be written more concisely as /// `_.ends_with(_)`. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// # let name = "_"; /// /// // Bad /// name.chars().last() == Some('_') || name.chars().next_back() == Some('-'); /// /// // Good /// name.ends_with('_') || name.ends_with('-'); /// ``` pub CHARS_LAST_CMP, style, "using `.chars().last()` or `.chars().next_back()` to check if a string ends with a char" } declare_clippy_lint! { /// **What it does:** Checks for usage of `.as_ref()` or `.as_mut()` where the /// types before and after the call are the same. /// /// **Why is this bad?** The call is unnecessary. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// # fn do_stuff(x: &[i32]) {} /// let x: &[i32] = &[1, 2, 3, 4, 5]; /// do_stuff(x.as_ref()); /// ``` /// The correct use would be: /// ```rust /// # fn do_stuff(x: &[i32]) {} /// let x: &[i32] = &[1, 2, 3, 4, 5]; /// do_stuff(x); /// ``` pub USELESS_ASREF, complexity, "using `as_ref` where the types before and after the call are the same" } declare_clippy_lint! { /// **What it does:** Checks for using `fold` when a more succinct alternative exists. /// Specifically, this checks for `fold`s which could be replaced by `any`, `all`, /// `sum` or `product`. /// /// **Why is this bad?** Readability. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// let _ = (0..3).fold(false, |acc, x| acc || x > 2); /// ``` /// This could be written as: /// ```rust /// let _ = (0..3).any(|x| x > 2); /// ``` pub UNNECESSARY_FOLD, style, "using `fold` when a more succinct alternative exists" } declare_clippy_lint! { /// **What it does:** Checks for `filter_map` calls which could be replaced by `filter` or `map`. /// More specifically it checks if the closure provided is only performing one of the /// filter or map operations and suggests the appropriate option. /// /// **Why is this bad?** Complexity. The intent is also clearer if only a single /// operation is being performed. /// /// **Known problems:** None /// /// **Example:** /// ```rust /// let _ = (0..3).filter_map(|x| if x > 2 { Some(x) } else { None }); /// /// // As there is no transformation of the argument this could be written as: /// let _ = (0..3).filter(|&x| x > 2); /// ``` /// /// ```rust /// let _ = (0..4).filter_map(|x| Some(x + 1)); /// /// // As there is no conditional check on the argument this could be written as: /// let _ = (0..4).map(|x| x + 1); /// ``` pub UNNECESSARY_FILTER_MAP, complexity, "using `filter_map` when a more succinct alternative exists" } declare_clippy_lint! { /// **What it does:** Checks for `into_iter` calls on references which should be replaced by `iter` /// or `iter_mut`. /// /// **Why is this bad?** Readability. Calling `into_iter` on a reference will not move out its /// content into the resulting iterator, which is confusing. It is better just call `iter` or /// `iter_mut` directly. /// /// **Known problems:** None /// /// **Example:** /// /// ```rust /// // Bad /// let _ = (&vec![3, 4, 5]).into_iter(); /// /// // Good /// let _ = (&vec![3, 4, 5]).iter(); /// ``` pub INTO_ITER_ON_REF, style, "using `.into_iter()` on a reference" } declare_clippy_lint! { /// **What it does:** Checks for calls to `map` followed by a `count`. /// /// **Why is this bad?** It looks suspicious. Maybe `map` was confused with `filter`. /// If the `map` call is intentional, this should be rewritten. Or, if you intend to /// drive the iterator to completion, you can just use `for_each` instead. /// /// **Known problems:** None /// /// **Example:** /// /// ```rust /// let _ = (0..3).map(|x| x + 2).count(); /// ``` pub SUSPICIOUS_MAP, complexity, "suspicious usage of map" } declare_clippy_lint! { /// **What it does:** Checks for `MaybeUninit::uninit().assume_init()`. /// /// **Why is this bad?** For most types, this is undefined behavior. /// /// **Known problems:** For now, we accept empty tuples and tuples / arrays /// of `MaybeUninit`. There may be other types that allow uninitialized /// data, but those are not yet rigorously defined. /// /// **Example:** /// /// ```rust /// // Beware the UB /// use std::mem::MaybeUninit; /// /// let _: usize = unsafe { MaybeUninit::uninit().assume_init() }; /// ``` /// /// Note that the following is OK: /// /// ```rust /// use std::mem::MaybeUninit; /// /// let _: [MaybeUninit; 5] = unsafe { /// MaybeUninit::uninit().assume_init() /// }; /// ``` pub UNINIT_ASSUMED_INIT, correctness, "`MaybeUninit::uninit().assume_init()`" } declare_clippy_lint! { /// **What it does:** Checks for `.checked_add/sub(x).unwrap_or(MAX/MIN)`. /// /// **Why is this bad?** These can be written simply with `saturating_add/sub` methods. /// /// **Example:** /// /// ```rust /// # let y: u32 = 0; /// # let x: u32 = 100; /// let add = x.checked_add(y).unwrap_or(u32::MAX); /// let sub = x.checked_sub(y).unwrap_or(u32::MIN); /// ``` /// /// can be written using dedicated methods for saturating addition/subtraction as: /// /// ```rust /// # let y: u32 = 0; /// # let x: u32 = 100; /// let add = x.saturating_add(y); /// let sub = x.saturating_sub(y); /// ``` pub MANUAL_SATURATING_ARITHMETIC, style, "`.chcked_add/sub(x).unwrap_or(MAX/MIN)`" } declare_clippy_lint! { /// **What it does:** Checks for `offset(_)`, `wrapping_`{`add`, `sub`}, etc. on raw pointers to /// zero-sized types /// /// **Why is this bad?** This is a no-op, and likely unintended /// /// **Known problems:** None /// /// **Example:** /// ```rust /// unsafe { (&() as *const ()).offset(1) }; /// ``` pub ZST_OFFSET, correctness, "Check for offset calculations on raw pointers to zero-sized types" } declare_clippy_lint! { /// **What it does:** Checks for `FileType::is_file()`. /// /// **Why is this bad?** When people testing a file type with `FileType::is_file` /// they are testing whether a path is something they can get bytes from. But /// `is_file` doesn't cover special file types in unix-like systems, and doesn't cover /// symlink in windows. Using `!FileType::is_dir()` is a better way to that intention. /// /// **Example:** /// /// ```rust /// # || { /// let metadata = std::fs::metadata("foo.txt")?; /// let filetype = metadata.file_type(); /// /// if filetype.is_file() { /// // read file /// } /// # Ok::<_, std::io::Error>(()) /// # }; /// ``` /// /// should be written as: /// /// ```rust /// # || { /// let metadata = std::fs::metadata("foo.txt")?; /// let filetype = metadata.file_type(); /// /// if !filetype.is_dir() { /// // read file /// } /// # Ok::<_, std::io::Error>(()) /// # }; /// ``` pub FILETYPE_IS_FILE, restriction, "`FileType::is_file` is not recommended to test for readable file type" } declare_clippy_lint! { /// **What it does:** Checks for usage of `_.as_ref().map(Deref::deref)` or it's aliases (such as String::as_str). /// /// **Why is this bad?** Readability, this can be written more concisely as a /// single method call. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// # let opt = Some("".to_string()); /// opt.as_ref().map(String::as_str) /// # ; /// ``` /// Can be written as /// ```rust /// # let opt = Some("".to_string()); /// opt.as_deref() /// # ; /// ``` pub OPTION_AS_REF_DEREF, complexity, "using `as_ref().map(Deref::deref)`, which is more succinctly expressed as `as_deref()`" } declare_clippy_lint! { /// **What it does:** Checks for usage of `iter().next()` on a Slice or an Array /// /// **Why is this bad?** These can be shortened into `.get()` /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// # let a = [1, 2, 3]; /// # let b = vec![1, 2, 3]; /// a[2..].iter().next(); /// b.iter().next(); /// ``` /// should be written as: /// ```rust /// # let a = [1, 2, 3]; /// # let b = vec![1, 2, 3]; /// a.get(2); /// b.get(0); /// ``` pub ITER_NEXT_SLICE, style, "using `.iter().next()` on a sliced array, which can be shortened to just `.get()`" } declare_clippy_lint! { /// **What it does:** Warns when using push_str with a single-character string literal, /// and push with a char would work fine. /// /// **Why is this bad?** It's less clear that we are pushing a single character /// /// **Known problems:** None /// /// **Example:** /// ``` /// let mut string = String::new(); /// string.push_str("R"); /// ``` /// Could be written as /// ``` /// let mut string = String::new(); /// string.push('R'); /// ``` pub SINGLE_CHAR_PUSH_STR, style, "`push_str()` used with a single-character string literal as parameter" } declare_clippy_lint! { /// **What it does:** As the counterpart to `or_fun_call`, this lint looks for unnecessary /// lazily evaluated closures on `Option` and `Result`. /// /// This lint suggests changing the following functions, when eager evaluation results in /// simpler code: /// - `unwrap_or_else` to `unwrap_or` /// - `and_then` to `and` /// - `or_else` to `or` /// - `get_or_insert_with` to `get_or_insert` /// - `ok_or_else` to `ok_or` /// /// **Why is this bad?** Using eager evaluation is shorter and simpler in some cases. /// /// **Known problems:** It is possible, but not recommended for `Deref` and `Index` to have /// side effects. Eagerly evaluating them can change the semantics of the program. /// /// **Example:** /// /// ```rust /// // example code where clippy issues a warning /// let opt: Option = None; /// /// opt.unwrap_or_else(|| 42); /// ``` /// Use instead: /// ```rust /// let opt: Option = None; /// /// opt.unwrap_or(42); /// ``` pub UNNECESSARY_LAZY_EVALUATIONS, style, "using unnecessary lazy evaluation, which can be replaced with simpler eager evaluation" } declare_lint_pass!(Methods => [ UNWRAP_USED, EXPECT_USED, SHOULD_IMPLEMENT_TRAIT, WRONG_SELF_CONVENTION, WRONG_PUB_SELF_CONVENTION, OK_EXPECT, MAP_UNWRAP_OR, RESULT_MAP_OR_INTO_OPTION, OPTION_MAP_OR_NONE, BIND_INSTEAD_OF_MAP, OR_FUN_CALL, EXPECT_FUN_CALL, CHARS_NEXT_CMP, CHARS_LAST_CMP, CLONE_ON_COPY, CLONE_ON_REF_PTR, CLONE_DOUBLE_REF, INEFFICIENT_TO_STRING, NEW_RET_NO_SELF, SINGLE_CHAR_PATTERN, SINGLE_CHAR_PUSH_STR, SEARCH_IS_SOME, TEMPORARY_CSTRING_AS_PTR, FILTER_NEXT, SKIP_WHILE_NEXT, FILTER_MAP, FILTER_MAP_NEXT, FLAT_MAP_IDENTITY, FIND_MAP, MAP_FLATTEN, ITERATOR_STEP_BY_ZERO, ITER_NEXT_SLICE, ITER_NTH, ITER_NTH_ZERO, ITER_SKIP_NEXT, GET_UNWRAP, STRING_EXTEND_CHARS, ITER_CLONED_COLLECT, USELESS_ASREF, UNNECESSARY_FOLD, UNNECESSARY_FILTER_MAP, INTO_ITER_ON_REF, SUSPICIOUS_MAP, UNINIT_ASSUMED_INIT, MANUAL_SATURATING_ARITHMETIC, ZST_OFFSET, FILETYPE_IS_FILE, OPTION_AS_REF_DEREF, UNNECESSARY_LAZY_EVALUATIONS, ]); impl<'tcx> LateLintPass<'tcx> for Methods { #[allow(clippy::too_many_lines)] fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx hir::Expr<'_>) { if in_macro(expr.span) { return; } let (method_names, arg_lists, method_spans) = method_calls(expr, 2); let method_names: Vec = method_names.iter().map(|s| s.as_str()).collect(); let method_names: Vec<&str> = method_names.iter().map(|s| &**s).collect(); match method_names.as_slice() { ["unwrap", "get"] => lint_get_unwrap(cx, expr, arg_lists[1], false), ["unwrap", "get_mut"] => lint_get_unwrap(cx, expr, arg_lists[1], true), ["unwrap", ..] => lint_unwrap(cx, expr, arg_lists[0]), ["expect", "ok"] => lint_ok_expect(cx, expr, arg_lists[1]), ["expect", ..] => lint_expect(cx, expr, arg_lists[0]), ["unwrap_or", "map"] => option_map_unwrap_or::lint(cx, expr, arg_lists[1], arg_lists[0], method_spans[1]), ["unwrap_or_else", "map"] => { if !lint_map_unwrap_or_else(cx, expr, arg_lists[1], arg_lists[0]) { unnecessary_lazy_eval::lint(cx, expr, arg_lists[0], true, "unwrap_or"); } }, ["map_or", ..] => lint_map_or_none(cx, expr, arg_lists[0]), ["and_then", ..] => { unnecessary_lazy_eval::lint(cx, expr, arg_lists[0], false, "and"); bind_instead_of_map::OptionAndThenSome::lint(cx, expr, arg_lists[0]); bind_instead_of_map::ResultAndThenOk::lint(cx, expr, arg_lists[0]); }, ["or_else", ..] => { unnecessary_lazy_eval::lint(cx, expr, arg_lists[0], false, "or"); bind_instead_of_map::ResultOrElseErrInfo::lint(cx, expr, arg_lists[0]); }, ["next", "filter"] => lint_filter_next(cx, expr, arg_lists[1]), ["next", "skip_while"] => lint_skip_while_next(cx, expr, arg_lists[1]), ["next", "iter"] => lint_iter_next(cx, expr, arg_lists[1]), ["map", "filter"] => lint_filter_map(cx, expr, arg_lists[1], arg_lists[0]), ["map", "filter_map"] => lint_filter_map_map(cx, expr, arg_lists[1], arg_lists[0]), ["next", "filter_map"] => lint_filter_map_next(cx, expr, arg_lists[1]), ["map", "find"] => lint_find_map(cx, expr, arg_lists[1], arg_lists[0]), ["flat_map", "filter"] => lint_filter_flat_map(cx, expr, arg_lists[1], arg_lists[0]), ["flat_map", "filter_map"] => lint_filter_map_flat_map(cx, expr, arg_lists[1], arg_lists[0]), ["flat_map", ..] => lint_flat_map_identity(cx, expr, arg_lists[0], method_spans[0]), ["flatten", "map"] => lint_map_flatten(cx, expr, arg_lists[1]), ["is_some", "find"] => lint_search_is_some(cx, expr, "find", arg_lists[1], arg_lists[0], method_spans[1]), ["is_some", "position"] => { lint_search_is_some(cx, expr, "position", arg_lists[1], arg_lists[0], method_spans[1]) }, ["is_some", "rposition"] => { lint_search_is_some(cx, expr, "rposition", arg_lists[1], arg_lists[0], method_spans[1]) }, ["extend", ..] => lint_extend(cx, expr, arg_lists[0]), ["as_ptr", "unwrap" | "expect"] => lint_cstring_as_ptr(cx, expr, &arg_lists[1][0], &arg_lists[0][0]), ["nth", "iter"] => lint_iter_nth(cx, expr, &arg_lists, false), ["nth", "iter_mut"] => lint_iter_nth(cx, expr, &arg_lists, true), ["nth", ..] => lint_iter_nth_zero(cx, expr, arg_lists[0]), ["step_by", ..] => lint_step_by(cx, expr, arg_lists[0]), ["next", "skip"] => lint_iter_skip_next(cx, expr, arg_lists[1]), ["collect", "cloned"] => lint_iter_cloned_collect(cx, expr, arg_lists[1]), ["as_ref"] => lint_asref(cx, expr, "as_ref", arg_lists[0]), ["as_mut"] => lint_asref(cx, expr, "as_mut", arg_lists[0]), ["fold", ..] => lint_unnecessary_fold(cx, expr, arg_lists[0], method_spans[0]), ["filter_map", ..] => unnecessary_filter_map::lint(cx, expr, arg_lists[0]), ["count", "map"] => lint_suspicious_map(cx, expr), ["assume_init"] => lint_maybe_uninit(cx, &arg_lists[0][0], expr), ["unwrap_or", arith @ ("checked_add" | "checked_sub" | "checked_mul")] => { manual_saturating_arithmetic::lint(cx, expr, &arg_lists, &arith["checked_".len()..]) }, ["add" | "offset" | "sub" | "wrapping_offset" | "wrapping_add" | "wrapping_sub"] => { check_pointer_offset(cx, expr, arg_lists[0]) }, ["is_file", ..] => lint_filetype_is_file(cx, expr, arg_lists[0]), ["map", "as_ref"] => lint_option_as_ref_deref(cx, expr, arg_lists[1], arg_lists[0], false), ["map", "as_mut"] => lint_option_as_ref_deref(cx, expr, arg_lists[1], arg_lists[0], true), ["unwrap_or_else", ..] => unnecessary_lazy_eval::lint(cx, expr, arg_lists[0], true, "unwrap_or"), ["get_or_insert_with", ..] => unnecessary_lazy_eval::lint(cx, expr, arg_lists[0], true, "get_or_insert"), ["ok_or_else", ..] => unnecessary_lazy_eval::lint(cx, expr, arg_lists[0], true, "ok_or"), _ => {}, } match expr.kind { hir::ExprKind::MethodCall(ref method_call, ref method_span, ref args, _) => { lint_or_fun_call(cx, expr, *method_span, &method_call.ident.as_str(), args); lint_expect_fun_call(cx, expr, *method_span, &method_call.ident.as_str(), args); let self_ty = cx.typeck_results().expr_ty_adjusted(&args[0]); if args.len() == 1 && method_call.ident.name == sym!(clone) { lint_clone_on_copy(cx, expr, &args[0], self_ty); lint_clone_on_ref_ptr(cx, expr, &args[0]); } if args.len() == 1 && method_call.ident.name == sym!(to_string) { inefficient_to_string::lint(cx, expr, &args[0], self_ty); } if let Some(fn_def_id) = cx.typeck_results().type_dependent_def_id(expr.hir_id) { if match_def_path(cx, fn_def_id, &paths::PUSH_STR) { lint_single_char_push_string(cx, expr, args); } } match self_ty.kind { ty::Ref(_, ty, _) if ty.kind == ty::Str => { for &(method, pos) in &PATTERN_METHODS { if method_call.ident.name.as_str() == method && args.len() > pos { lint_single_char_pattern(cx, expr, &args[pos]); } } }, ty::Ref(..) if method_call.ident.name == sym!(into_iter) => { lint_into_iter(cx, expr, self_ty, *method_span); }, _ => (), } }, hir::ExprKind::Binary(op, ref lhs, ref rhs) if op.node == hir::BinOpKind::Eq || op.node == hir::BinOpKind::Ne => { let mut info = BinaryExprInfo { expr, chain: lhs, other: rhs, eq: op.node == hir::BinOpKind::Eq, }; lint_binary_expr_with_method_call(cx, &mut info); } _ => (), } } #[allow(clippy::too_many_lines)] fn check_impl_item(&mut self, cx: &LateContext<'tcx>, impl_item: &'tcx hir::ImplItem<'_>) { if in_external_macro(cx.sess(), impl_item.span) { return; } let name = impl_item.ident.name.as_str(); let parent = cx.tcx.hir().get_parent_item(impl_item.hir_id); let item = cx.tcx.hir().expect_item(parent); let def_id = cx.tcx.hir().local_def_id(item.hir_id); let self_ty = cx.tcx.type_of(def_id); if_chain! { if let hir::ImplItemKind::Fn(ref sig, id) = impl_item.kind; if let Some(first_arg) = iter_input_pats(&sig.decl, cx.tcx.hir().body(id)).next(); if let hir::ItemKind::Impl{ of_trait: None, .. } = item.kind; let method_def_id = cx.tcx.hir().local_def_id(impl_item.hir_id); let method_sig = cx.tcx.fn_sig(method_def_id); let method_sig = cx.tcx.erase_late_bound_regions(&method_sig); let first_arg_ty = &method_sig.inputs().iter().next(); // check conventions w.r.t. conversion method names and predicates if let Some(first_arg_ty) = first_arg_ty; then { if cx.access_levels.is_exported(impl_item.hir_id) { // check missing trait implementations for method_config in &TRAIT_METHODS { if name == method_config.method_name && sig.decl.inputs.len() == method_config.param_count && method_config.output_type.matches(cx, &sig.decl.output) && method_config.self_kind.matches(cx, self_ty, first_arg_ty) && fn_header_equals(method_config.fn_header, sig.header) && method_config.lifetime_param_cond(&impl_item) { span_lint_and_help( cx, SHOULD_IMPLEMENT_TRAIT, impl_item.span, &format!( "method `{}` can be confused for the standard trait method `{}::{}`", method_config.method_name, method_config.trait_name, method_config.method_name ), None, &format!( "consider implementing the trait `{}` or choosing a less ambiguous method name", method_config.trait_name ) ); } } } if let Some((ref conv, self_kinds)) = &CONVENTIONS .iter() .find(|(ref conv, _)| conv.check(&name)) { if !self_kinds.iter().any(|k| k.matches(cx, self_ty, first_arg_ty)) { let lint = if item.vis.node.is_pub() { WRONG_PUB_SELF_CONVENTION } else { WRONG_SELF_CONVENTION }; span_lint( cx, lint, first_arg.pat.span, &format!("methods called `{}` usually take {}; consider choosing a less ambiguous name", conv, &self_kinds .iter() .map(|k| k.description()) .collect::>() .join(" or ") ), ); } } } } if let hir::ImplItemKind::Fn(_, _) = impl_item.kind { let ret_ty = return_ty(cx, impl_item.hir_id); let contains_self_ty = |ty: Ty<'tcx>| { ty.walk().any(|inner| match inner.unpack() { GenericArgKind::Type(inner_ty) => TyS::same_type(self_ty, inner_ty), GenericArgKind::Lifetime(_) | GenericArgKind::Const(_) => false, }) }; // walk the return type and check for Self (this does not check associated types) if contains_self_ty(ret_ty) { return; } // if return type is impl trait, check the associated types if let ty::Opaque(def_id, _) = ret_ty.kind { // one of the associated types must be Self for &(predicate, _span) in cx.tcx.predicates_of(def_id).predicates { if let ty::PredicateAtom::Projection(projection_predicate) = predicate.skip_binders() { // walk the associated type and check for Self if contains_self_ty(projection_predicate.ty) { return; } } } } if name == "new" && !TyS::same_type(ret_ty, self_ty) { span_lint( cx, NEW_RET_NO_SELF, impl_item.span, "methods called `new` usually return `Self`", ); } } } } /// Checks for the `OR_FUN_CALL` lint. #[allow(clippy::too_many_lines)] fn lint_or_fun_call<'tcx>( cx: &LateContext<'tcx>, expr: &hir::Expr<'_>, method_span: Span, name: &str, args: &'tcx [hir::Expr<'_>], ) { // Searches an expression for method calls or function calls that aren't ctors struct FunCallFinder<'a, 'tcx> { cx: &'a LateContext<'tcx>, found: bool, } impl<'a, 'tcx> intravisit::Visitor<'tcx> for FunCallFinder<'a, 'tcx> { type Map = Map<'tcx>; fn visit_expr(&mut self, expr: &'tcx hir::Expr<'_>) { let call_found = match &expr.kind { // ignore enum and struct constructors hir::ExprKind::Call(..) => !is_ctor_or_promotable_const_function(self.cx, expr), hir::ExprKind::MethodCall(..) => true, _ => false, }; if call_found { self.found |= true; } if !self.found { intravisit::walk_expr(self, expr); } } fn nested_visit_map(&mut self) -> intravisit::NestedVisitorMap { intravisit::NestedVisitorMap::None } } /// Checks for `unwrap_or(T::new())` or `unwrap_or(T::default())`. fn check_unwrap_or_default( cx: &LateContext<'_>, name: &str, fun: &hir::Expr<'_>, self_expr: &hir::Expr<'_>, arg: &hir::Expr<'_>, or_has_args: bool, span: Span, ) -> bool { if_chain! { if !or_has_args; if name == "unwrap_or"; if let hir::ExprKind::Path(ref qpath) = fun.kind; let path = &*last_path_segment(qpath).ident.as_str(); if ["default", "new"].contains(&path); let arg_ty = cx.typeck_results().expr_ty(arg); if let Some(default_trait_id) = get_trait_def_id(cx, &paths::DEFAULT_TRAIT); if implements_trait(cx, arg_ty, default_trait_id, &[]); then { let mut applicability = Applicability::MachineApplicable; span_lint_and_sugg( cx, OR_FUN_CALL, span, &format!("use of `{}` followed by a call to `{}`", name, path), "try this", format!( "{}.unwrap_or_default()", snippet_with_applicability(cx, self_expr.span, "_", &mut applicability) ), applicability, ); true } else { false } } } /// Checks for `*or(foo())`. #[allow(clippy::too_many_arguments)] fn check_general_case<'tcx>( cx: &LateContext<'tcx>, name: &str, method_span: Span, fun_span: Span, self_expr: &hir::Expr<'_>, arg: &'tcx hir::Expr<'_>, or_has_args: bool, span: Span, ) { if let hir::ExprKind::MethodCall(ref path, _, ref args, _) = &arg.kind { if path.ident.as_str() == "len" { let ty = walk_ptrs_ty(cx.typeck_results().expr_ty(&args[0])); match ty.kind { ty::Slice(_) | ty::Array(_, _) => return, _ => (), } if match_type(cx, ty, &paths::VEC) { return; } } } // (path, fn_has_argument, methods, suffix) let know_types: &[(&[_], _, &[_], _)] = &[ (&paths::BTREEMAP_ENTRY, false, &["or_insert"], "with"), (&paths::HASHMAP_ENTRY, false, &["or_insert"], "with"), (&paths::OPTION, false, &["map_or", "ok_or", "or", "unwrap_or"], "else"), (&paths::RESULT, true, &["or", "unwrap_or"], "else"), ]; if_chain! { if know_types.iter().any(|k| k.2.contains(&name)); let mut finder = FunCallFinder { cx: &cx, found: false }; if { finder.visit_expr(&arg); finder.found }; if !contains_return(&arg); let self_ty = cx.typeck_results().expr_ty(self_expr); if let Some(&(_, fn_has_arguments, poss, suffix)) = know_types.iter().find(|&&i| match_type(cx, self_ty, i.0)); if poss.contains(&name); then { let sugg: Cow<'_, _> = match (fn_has_arguments, !or_has_args) { (true, _) => format!("|_| {}", snippet_with_macro_callsite(cx, arg.span, "..")).into(), (false, false) => format!("|| {}", snippet_with_macro_callsite(cx, arg.span, "..")).into(), (false, true) => snippet_with_macro_callsite(cx, fun_span, ".."), }; let span_replace_word = method_span.with_hi(span.hi()); span_lint_and_sugg( cx, OR_FUN_CALL, span_replace_word, &format!("use of `{}` followed by a function call", name), "try this", format!("{}_{}({})", name, suffix, sugg), Applicability::HasPlaceholders, ); } } } if args.len() == 2 { match args[1].kind { hir::ExprKind::Call(ref fun, ref or_args) => { let or_has_args = !or_args.is_empty(); if !check_unwrap_or_default(cx, name, fun, &args[0], &args[1], or_has_args, expr.span) { check_general_case( cx, name, method_span, fun.span, &args[0], &args[1], or_has_args, expr.span, ); } }, hir::ExprKind::MethodCall(_, span, ref or_args, _) => check_general_case( cx, name, method_span, span, &args[0], &args[1], !or_args.is_empty(), expr.span, ), _ => {}, } } } /// Checks for the `EXPECT_FUN_CALL` lint. #[allow(clippy::too_many_lines)] fn lint_expect_fun_call( cx: &LateContext<'_>, expr: &hir::Expr<'_>, method_span: Span, name: &str, args: &[hir::Expr<'_>], ) { // Strip `&`, `as_ref()` and `as_str()` off `arg` until we're left with either a `String` or // `&str` fn get_arg_root<'a>(cx: &LateContext<'_>, arg: &'a hir::Expr<'a>) -> &'a hir::Expr<'a> { let mut arg_root = arg; loop { arg_root = match &arg_root.kind { hir::ExprKind::AddrOf(hir::BorrowKind::Ref, _, expr) => expr, hir::ExprKind::MethodCall(method_name, _, call_args, _) => { if call_args.len() == 1 && (method_name.ident.name == sym!(as_str) || method_name.ident.name == sym!(as_ref)) && { let arg_type = cx.typeck_results().expr_ty(&call_args[0]); let base_type = walk_ptrs_ty(arg_type); base_type.kind == ty::Str || is_type_diagnostic_item(cx, base_type, sym!(string_type)) } { &call_args[0] } else { break; } }, _ => break, }; } arg_root } // Only `&'static str` or `String` can be used directly in the `panic!`. Other types should be // converted to string. fn requires_to_string(cx: &LateContext<'_>, arg: &hir::Expr<'_>) -> bool { let arg_ty = cx.typeck_results().expr_ty(arg); if is_type_diagnostic_item(cx, arg_ty, sym!(string_type)) { return false; } if let ty::Ref(_, ty, ..) = arg_ty.kind { if ty.kind == ty::Str && can_be_static_str(cx, arg) { return false; } }; true } // Check if an expression could have type `&'static str`, knowing that it // has type `&str` for some lifetime. fn can_be_static_str(cx: &LateContext<'_>, arg: &hir::Expr<'_>) -> bool { match arg.kind { hir::ExprKind::Lit(_) => true, hir::ExprKind::Call(fun, _) => { if let hir::ExprKind::Path(ref p) = fun.kind { match cx.qpath_res(p, fun.hir_id) { hir::def::Res::Def(hir::def::DefKind::Fn | hir::def::DefKind::AssocFn, def_id) => matches!( cx.tcx.fn_sig(def_id).output().skip_binder().kind, ty::Ref(ty::ReStatic, ..) ), _ => false, } } else { false } }, hir::ExprKind::MethodCall(..) => { cx.typeck_results() .type_dependent_def_id(arg.hir_id) .map_or(false, |method_id| { matches!( cx.tcx.fn_sig(method_id).output().skip_binder().kind, ty::Ref(ty::ReStatic, ..) ) }) }, hir::ExprKind::Path(ref p) => matches!( cx.qpath_res(p, arg.hir_id), hir::def::Res::Def(hir::def::DefKind::Const | hir::def::DefKind::Static, _) ), _ => false, } } fn generate_format_arg_snippet( cx: &LateContext<'_>, a: &hir::Expr<'_>, applicability: &mut Applicability, ) -> Vec { if_chain! { if let hir::ExprKind::AddrOf(hir::BorrowKind::Ref, _, ref format_arg) = a.kind; if let hir::ExprKind::Match(ref format_arg_expr, _, _) = format_arg.kind; if let hir::ExprKind::Tup(ref format_arg_expr_tup) = format_arg_expr.kind; then { format_arg_expr_tup .iter() .map(|a| snippet_with_applicability(cx, a.span, "..", applicability).into_owned()) .collect() } else { unreachable!() } } } fn is_call(node: &hir::ExprKind<'_>) -> bool { match node { hir::ExprKind::AddrOf(hir::BorrowKind::Ref, _, expr) => { is_call(&expr.kind) }, hir::ExprKind::Call(..) | hir::ExprKind::MethodCall(..) // These variants are debatable or require further examination | hir::ExprKind::Match(..) | hir::ExprKind::Block{ .. } => true, _ => false, } } if args.len() != 2 || name != "expect" || !is_call(&args[1].kind) { return; } let receiver_type = cx.typeck_results().expr_ty_adjusted(&args[0]); let closure_args = if is_type_diagnostic_item(cx, receiver_type, sym!(option_type)) { "||" } else if is_type_diagnostic_item(cx, receiver_type, sym!(result_type)) { "|_|" } else { return; }; let arg_root = get_arg_root(cx, &args[1]); let span_replace_word = method_span.with_hi(expr.span.hi()); let mut applicability = Applicability::MachineApplicable; //Special handling for `format!` as arg_root if_chain! { if let hir::ExprKind::Block(block, None) = &arg_root.kind; if block.stmts.len() == 1; if let hir::StmtKind::Local(local) = &block.stmts[0].kind; if let Some(arg_root) = &local.init; if let hir::ExprKind::Call(ref inner_fun, ref inner_args) = arg_root.kind; if is_expn_of(inner_fun.span, "format").is_some() && inner_args.len() == 1; if let hir::ExprKind::Call(_, format_args) = &inner_args[0].kind; then { let fmt_spec = &format_args[0]; let fmt_args = &format_args[1]; let mut args = vec![snippet(cx, fmt_spec.span, "..").into_owned()]; args.extend(generate_format_arg_snippet(cx, fmt_args, &mut applicability)); let sugg = args.join(", "); span_lint_and_sugg( cx, EXPECT_FUN_CALL, span_replace_word, &format!("use of `{}` followed by a function call", name), "try this", format!("unwrap_or_else({} panic!({}))", closure_args, sugg), applicability, ); return; } } let mut arg_root_snippet: Cow<'_, _> = snippet_with_applicability(cx, arg_root.span, "..", &mut applicability); if requires_to_string(cx, arg_root) { arg_root_snippet.to_mut().push_str(".to_string()"); } span_lint_and_sugg( cx, EXPECT_FUN_CALL, span_replace_word, &format!("use of `{}` followed by a function call", name), "try this", format!("unwrap_or_else({} {{ panic!({}) }})", closure_args, arg_root_snippet), applicability, ); } /// Checks for the `CLONE_ON_COPY` lint. fn lint_clone_on_copy(cx: &LateContext<'_>, expr: &hir::Expr<'_>, arg: &hir::Expr<'_>, arg_ty: Ty<'_>) { let ty = cx.typeck_results().expr_ty(expr); if let ty::Ref(_, inner, _) = arg_ty.kind { if let ty::Ref(_, innermost, _) = inner.kind { span_lint_and_then( cx, CLONE_DOUBLE_REF, expr.span, "using `clone` on a double-reference; \ this will copy the reference instead of cloning the inner type", |diag| { if let Some(snip) = sugg::Sugg::hir_opt(cx, arg) { let mut ty = innermost; let mut n = 0; while let ty::Ref(_, inner, _) = ty.kind { ty = inner; n += 1; } let refs: String = iter::repeat('&').take(n + 1).collect(); let derefs: String = iter::repeat('*').take(n).collect(); let explicit = format!("<{}{}>::clone({})", refs, ty, snip); diag.span_suggestion( expr.span, "try dereferencing it", format!("{}({}{}).clone()", refs, derefs, snip.deref()), Applicability::MaybeIncorrect, ); diag.span_suggestion( expr.span, "or try being explicit if you are sure, that you want to clone a reference", explicit, Applicability::MaybeIncorrect, ); } }, ); return; // don't report clone_on_copy } } if is_copy(cx, ty) { let snip; if let Some(snippet) = sugg::Sugg::hir_opt(cx, arg) { let parent = cx.tcx.hir().get_parent_node(expr.hir_id); match &cx.tcx.hir().get(parent) { hir::Node::Expr(parent) => match parent.kind { // &*x is a nop, &x.clone() is not hir::ExprKind::AddrOf(..) => return, // (*x).func() is useless, x.clone().func() can work in case func borrows mutably hir::ExprKind::MethodCall(_, _, parent_args, _) if expr.hir_id == parent_args[0].hir_id => { return; }, _ => {}, }, hir::Node::Stmt(stmt) => { if let hir::StmtKind::Local(ref loc) = stmt.kind { if let hir::PatKind::Ref(..) = loc.pat.kind { // let ref y = *x borrows x, let ref y = x.clone() does not return; } } }, _ => {}, } // x.clone() might have dereferenced x, possibly through Deref impls if cx.typeck_results().expr_ty(arg) == ty { snip = Some(("try removing the `clone` call", format!("{}", snippet))); } else { let deref_count = cx .typeck_results() .expr_adjustments(arg) .iter() .filter(|adj| matches!(adj.kind, ty::adjustment::Adjust::Deref(_))) .count(); let derefs: String = iter::repeat('*').take(deref_count).collect(); snip = Some(("try dereferencing it", format!("{}{}", derefs, snippet))); } } else { snip = None; } span_lint_and_then(cx, CLONE_ON_COPY, expr.span, "using `clone` on a `Copy` type", |diag| { if let Some((text, snip)) = snip { diag.span_suggestion(expr.span, text, snip, Applicability::MachineApplicable); } }); } } fn lint_clone_on_ref_ptr(cx: &LateContext<'_>, expr: &hir::Expr<'_>, arg: &hir::Expr<'_>) { let obj_ty = walk_ptrs_ty(cx.typeck_results().expr_ty(arg)); if let ty::Adt(_, subst) = obj_ty.kind { let caller_type = if is_type_diagnostic_item(cx, obj_ty, sym::Rc) { "Rc" } else if is_type_diagnostic_item(cx, obj_ty, sym::Arc) { "Arc" } else if match_type(cx, obj_ty, &paths::WEAK_RC) || match_type(cx, obj_ty, &paths::WEAK_ARC) { "Weak" } else { return; }; span_lint_and_sugg( cx, CLONE_ON_REF_PTR, expr.span, "using `.clone()` on a ref-counted pointer", "try this", format!( "{}::<{}>::clone(&{})", caller_type, subst.type_at(0), snippet(cx, arg.span, "_") ), Applicability::Unspecified, // Sometimes unnecessary ::<_> after Rc/Arc/Weak ); } } fn lint_string_extend(cx: &LateContext<'_>, expr: &hir::Expr<'_>, args: &[hir::Expr<'_>]) { let arg = &args[1]; if let Some(arglists) = method_chain_args(arg, &["chars"]) { let target = &arglists[0][0]; let self_ty = walk_ptrs_ty(cx.typeck_results().expr_ty(target)); let ref_str = if self_ty.kind == ty::Str { "" } else if is_type_diagnostic_item(cx, self_ty, sym!(string_type)) { "&" } else { return; }; let mut applicability = Applicability::MachineApplicable; span_lint_and_sugg( cx, STRING_EXTEND_CHARS, expr.span, "calling `.extend(_.chars())`", "try this", format!( "{}.push_str({}{})", snippet_with_applicability(cx, args[0].span, "_", &mut applicability), ref_str, snippet_with_applicability(cx, target.span, "_", &mut applicability) ), applicability, ); } } fn lint_extend(cx: &LateContext<'_>, expr: &hir::Expr<'_>, args: &[hir::Expr<'_>]) { let obj_ty = walk_ptrs_ty(cx.typeck_results().expr_ty(&args[0])); if is_type_diagnostic_item(cx, obj_ty, sym!(string_type)) { lint_string_extend(cx, expr, args); } } fn lint_cstring_as_ptr(cx: &LateContext<'_>, expr: &hir::Expr<'_>, source: &hir::Expr<'_>, unwrap: &hir::Expr<'_>) { if_chain! { let source_type = cx.typeck_results().expr_ty(source); if let ty::Adt(def, substs) = source_type.kind; if cx.tcx.is_diagnostic_item(sym!(result_type), def.did); if match_type(cx, substs.type_at(0), &paths::CSTRING); then { span_lint_and_then( cx, TEMPORARY_CSTRING_AS_PTR, expr.span, "you are getting the inner pointer of a temporary `CString`", |diag| { diag.note("that pointer will be invalid outside this expression"); diag.span_help(unwrap.span, "assign the `CString` to a variable to extend its lifetime"); }); } } } fn lint_iter_cloned_collect<'tcx>(cx: &LateContext<'tcx>, expr: &hir::Expr<'_>, iter_args: &'tcx [hir::Expr<'_>]) { if_chain! { if is_type_diagnostic_item(cx, cx.typeck_results().expr_ty(expr), sym!(vec_type)); if let Some(slice) = derefs_to_slice(cx, &iter_args[0], cx.typeck_results().expr_ty(&iter_args[0])); if let Some(to_replace) = expr.span.trim_start(slice.span.source_callsite()); then { span_lint_and_sugg( cx, ITER_CLONED_COLLECT, to_replace, "called `iter().cloned().collect()` on a slice to create a `Vec`. Calling `to_vec()` is both faster and \ more readable", "try", ".to_vec()".to_string(), Applicability::MachineApplicable, ); } } } fn lint_unnecessary_fold(cx: &LateContext<'_>, expr: &hir::Expr<'_>, fold_args: &[hir::Expr<'_>], fold_span: Span) { fn check_fold_with_op( cx: &LateContext<'_>, expr: &hir::Expr<'_>, fold_args: &[hir::Expr<'_>], fold_span: Span, op: hir::BinOpKind, replacement_method_name: &str, replacement_has_args: bool, ) { if_chain! { // Extract the body of the closure passed to fold if let hir::ExprKind::Closure(_, _, body_id, _, _) = fold_args[2].kind; let closure_body = cx.tcx.hir().body(body_id); let closure_expr = remove_blocks(&closure_body.value); // Check if the closure body is of the form `acc some_expr(x)` if let hir::ExprKind::Binary(ref bin_op, ref left_expr, ref right_expr) = closure_expr.kind; if bin_op.node == op; // Extract the names of the two arguments to the closure if let Some(first_arg_ident) = get_arg_name(&closure_body.params[0].pat); if let Some(second_arg_ident) = get_arg_name(&closure_body.params[1].pat); if match_var(&*left_expr, first_arg_ident); if replacement_has_args || match_var(&*right_expr, second_arg_ident); then { let mut applicability = Applicability::MachineApplicable; let sugg = if replacement_has_args { format!( "{replacement}(|{s}| {r})", replacement = replacement_method_name, s = second_arg_ident, r = snippet_with_applicability(cx, right_expr.span, "EXPR", &mut applicability), ) } else { format!( "{replacement}()", replacement = replacement_method_name, ) }; span_lint_and_sugg( cx, UNNECESSARY_FOLD, fold_span.with_hi(expr.span.hi()), // TODO #2371 don't suggest e.g., .any(|x| f(x)) if we can suggest .any(f) "this `.fold` can be written more succinctly using another method", "try", sugg, applicability, ); } } } // Check that this is a call to Iterator::fold rather than just some function called fold if !match_trait_method(cx, expr, &paths::ITERATOR) { return; } assert!( fold_args.len() == 3, "Expected fold_args to have three entries - the receiver, the initial value and the closure" ); // Check if the first argument to .fold is a suitable literal if let hir::ExprKind::Lit(ref lit) = fold_args[1].kind { match lit.node { ast::LitKind::Bool(false) => { check_fold_with_op(cx, expr, fold_args, fold_span, hir::BinOpKind::Or, "any", true) }, ast::LitKind::Bool(true) => { check_fold_with_op(cx, expr, fold_args, fold_span, hir::BinOpKind::And, "all", true) }, ast::LitKind::Int(0, _) => { check_fold_with_op(cx, expr, fold_args, fold_span, hir::BinOpKind::Add, "sum", false) }, ast::LitKind::Int(1, _) => { check_fold_with_op(cx, expr, fold_args, fold_span, hir::BinOpKind::Mul, "product", false) }, _ => (), } } } fn lint_step_by<'tcx>(cx: &LateContext<'tcx>, expr: &hir::Expr<'_>, args: &'tcx [hir::Expr<'_>]) { if match_trait_method(cx, expr, &paths::ITERATOR) { if let Some((Constant::Int(0), _)) = constant(cx, cx.typeck_results(), &args[1]) { span_lint( cx, ITERATOR_STEP_BY_ZERO, expr.span, "Iterator::step_by(0) will panic at runtime", ); } } } fn lint_iter_next<'tcx>(cx: &LateContext<'tcx>, expr: &'tcx hir::Expr<'_>, iter_args: &'tcx [hir::Expr<'_>]) { let caller_expr = &iter_args[0]; // Skip lint if the `iter().next()` expression is a for loop argument, // since it is already covered by `&loops::ITER_NEXT_LOOP` let mut parent_expr_opt = get_parent_expr(cx, expr); while let Some(parent_expr) = parent_expr_opt { if higher::for_loop(parent_expr).is_some() { return; } parent_expr_opt = get_parent_expr(cx, parent_expr); } if derefs_to_slice(cx, caller_expr, cx.typeck_results().expr_ty(caller_expr)).is_some() { // caller is a Slice if_chain! { if let hir::ExprKind::Index(ref caller_var, ref index_expr) = &caller_expr.kind; if let Some(higher::Range { start: Some(start_expr), end: None, limits: ast::RangeLimits::HalfOpen }) = higher::range(index_expr); if let hir::ExprKind::Lit(ref start_lit) = &start_expr.kind; if let ast::LitKind::Int(start_idx, _) = start_lit.node; then { let mut applicability = Applicability::MachineApplicable; span_lint_and_sugg( cx, ITER_NEXT_SLICE, expr.span, "using `.iter().next()` on a Slice without end index", "try calling", format!("{}.get({})", snippet_with_applicability(cx, caller_var.span, "..", &mut applicability), start_idx), applicability, ); } } } else if is_type_diagnostic_item(cx, cx.typeck_results().expr_ty(caller_expr), sym!(vec_type)) || matches!( &walk_ptrs_ty(cx.typeck_results().expr_ty(caller_expr)).kind, ty::Array(_, _) ) { // caller is a Vec or an Array let mut applicability = Applicability::MachineApplicable; span_lint_and_sugg( cx, ITER_NEXT_SLICE, expr.span, "using `.iter().next()` on an array", "try calling", format!( "{}.get(0)", snippet_with_applicability(cx, caller_expr.span, "..", &mut applicability) ), applicability, ); } } fn lint_iter_nth<'tcx>( cx: &LateContext<'tcx>, expr: &hir::Expr<'_>, nth_and_iter_args: &[&'tcx [hir::Expr<'tcx>]], is_mut: bool, ) { let iter_args = nth_and_iter_args[1]; let mut_str = if is_mut { "_mut" } else { "" }; let caller_type = if derefs_to_slice(cx, &iter_args[0], cx.typeck_results().expr_ty(&iter_args[0])).is_some() { "slice" } else if is_type_diagnostic_item(cx, cx.typeck_results().expr_ty(&iter_args[0]), sym!(vec_type)) { "Vec" } else if is_type_diagnostic_item(cx, cx.typeck_results().expr_ty(&iter_args[0]), sym!(vecdeque_type)) { "VecDeque" } else { let nth_args = nth_and_iter_args[0]; lint_iter_nth_zero(cx, expr, &nth_args); return; // caller is not a type that we want to lint }; span_lint_and_help( cx, ITER_NTH, expr.span, &format!("called `.iter{0}().nth()` on a {1}", mut_str, caller_type), None, &format!("calling `.get{}()` is both faster and more readable", mut_str), ); } fn lint_iter_nth_zero<'tcx>(cx: &LateContext<'tcx>, expr: &hir::Expr<'_>, nth_args: &'tcx [hir::Expr<'_>]) { if_chain! { if match_trait_method(cx, expr, &paths::ITERATOR); if let Some((Constant::Int(0), _)) = constant(cx, cx.typeck_results(), &nth_args[1]); then { let mut applicability = Applicability::MachineApplicable; span_lint_and_sugg( cx, ITER_NTH_ZERO, expr.span, "called `.nth(0)` on a `std::iter::Iterator`, when `.next()` is equivalent", "try calling `.next()` instead of `.nth(0)`", format!("{}.next()", snippet_with_applicability(cx, nth_args[0].span, "..", &mut applicability)), applicability, ); } } } fn lint_get_unwrap<'tcx>(cx: &LateContext<'tcx>, expr: &hir::Expr<'_>, get_args: &'tcx [hir::Expr<'_>], is_mut: bool) { // Note: we don't want to lint `get_mut().unwrap` for `HashMap` or `BTreeMap`, // because they do not implement `IndexMut` let mut applicability = Applicability::MachineApplicable; let expr_ty = cx.typeck_results().expr_ty(&get_args[0]); let get_args_str = if get_args.len() > 1 { snippet_with_applicability(cx, get_args[1].span, "_", &mut applicability) } else { return; // not linting on a .get().unwrap() chain or variant }; let mut needs_ref; let caller_type = if derefs_to_slice(cx, &get_args[0], expr_ty).is_some() { needs_ref = get_args_str.parse::().is_ok(); "slice" } else if is_type_diagnostic_item(cx, expr_ty, sym!(vec_type)) { needs_ref = get_args_str.parse::().is_ok(); "Vec" } else if is_type_diagnostic_item(cx, expr_ty, sym!(vecdeque_type)) { needs_ref = get_args_str.parse::().is_ok(); "VecDeque" } else if !is_mut && is_type_diagnostic_item(cx, expr_ty, sym!(hashmap_type)) { needs_ref = true; "HashMap" } else if !is_mut && match_type(cx, expr_ty, &paths::BTREEMAP) { needs_ref = true; "BTreeMap" } else { return; // caller is not a type that we want to lint }; let mut span = expr.span; // Handle the case where the result is immediately dereferenced // by not requiring ref and pulling the dereference into the // suggestion. if_chain! { if needs_ref; if let Some(parent) = get_parent_expr(cx, expr); if let hir::ExprKind::Unary(hir::UnOp::UnDeref, _) = parent.kind; then { needs_ref = false; span = parent.span; } } let mut_str = if is_mut { "_mut" } else { "" }; let borrow_str = if !needs_ref { "" } else if is_mut { "&mut " } else { "&" }; span_lint_and_sugg( cx, GET_UNWRAP, span, &format!( "called `.get{0}().unwrap()` on a {1}. Using `[]` is more clear and more concise", mut_str, caller_type ), "try this", format!( "{}{}[{}]", borrow_str, snippet_with_applicability(cx, get_args[0].span, "_", &mut applicability), get_args_str ), applicability, ); } fn lint_iter_skip_next(cx: &LateContext<'_>, expr: &hir::Expr<'_>, skip_args: &[hir::Expr<'_>]) { // lint if caller of skip is an Iterator if match_trait_method(cx, expr, &paths::ITERATOR) { if let [caller, n] = skip_args { let hint = format!(".nth({})", snippet(cx, n.span, "..")); span_lint_and_sugg( cx, ITER_SKIP_NEXT, expr.span.trim_start(caller.span).unwrap(), "called `skip(x).next()` on an iterator", "use `nth` instead", hint, Applicability::MachineApplicable, ); } } } fn derefs_to_slice<'tcx>( cx: &LateContext<'tcx>, expr: &'tcx hir::Expr<'tcx>, ty: Ty<'tcx>, ) -> Option<&'tcx hir::Expr<'tcx>> { fn may_slice<'a>(cx: &LateContext<'a>, ty: Ty<'a>) -> bool { match ty.kind { ty::Slice(_) => true, ty::Adt(def, _) if def.is_box() => may_slice(cx, ty.boxed_ty()), ty::Adt(..) => is_type_diagnostic_item(cx, ty, sym!(vec_type)), ty::Array(_, size) => size .try_eval_usize(cx.tcx, cx.param_env) .map_or(false, |size| size < 32), ty::Ref(_, inner, _) => may_slice(cx, inner), _ => false, } } if let hir::ExprKind::MethodCall(ref path, _, ref args, _) = expr.kind { if path.ident.name == sym!(iter) && may_slice(cx, cx.typeck_results().expr_ty(&args[0])) { Some(&args[0]) } else { None } } else { match ty.kind { ty::Slice(_) => Some(expr), ty::Adt(def, _) if def.is_box() && may_slice(cx, ty.boxed_ty()) => Some(expr), ty::Ref(_, inner, _) => { if may_slice(cx, inner) { Some(expr) } else { None } }, _ => None, } } } /// lint use of `unwrap()` for `Option`s and `Result`s fn lint_unwrap(cx: &LateContext<'_>, expr: &hir::Expr<'_>, unwrap_args: &[hir::Expr<'_>]) { let obj_ty = walk_ptrs_ty(cx.typeck_results().expr_ty(&unwrap_args[0])); let mess = if is_type_diagnostic_item(cx, obj_ty, sym!(option_type)) { Some((UNWRAP_USED, "an Option", "None")) } else if is_type_diagnostic_item(cx, obj_ty, sym!(result_type)) { Some((UNWRAP_USED, "a Result", "Err")) } else { None }; if let Some((lint, kind, none_value)) = mess { span_lint_and_help( cx, lint, expr.span, &format!("used `unwrap()` on `{}` value", kind,), None, &format!( "if you don't want to handle the `{}` case gracefully, consider \ using `expect()` to provide a better panic message", none_value, ), ); } } /// lint use of `expect()` for `Option`s and `Result`s fn lint_expect(cx: &LateContext<'_>, expr: &hir::Expr<'_>, expect_args: &[hir::Expr<'_>]) { let obj_ty = walk_ptrs_ty(cx.typeck_results().expr_ty(&expect_args[0])); let mess = if is_type_diagnostic_item(cx, obj_ty, sym!(option_type)) { Some((EXPECT_USED, "an Option", "None")) } else if is_type_diagnostic_item(cx, obj_ty, sym!(result_type)) { Some((EXPECT_USED, "a Result", "Err")) } else { None }; if let Some((lint, kind, none_value)) = mess { span_lint_and_help( cx, lint, expr.span, &format!("used `expect()` on `{}` value", kind,), None, &format!("if this value is an `{}`, it will panic", none_value,), ); } } /// lint use of `ok().expect()` for `Result`s fn lint_ok_expect(cx: &LateContext<'_>, expr: &hir::Expr<'_>, ok_args: &[hir::Expr<'_>]) { if_chain! { // lint if the caller of `ok()` is a `Result` if is_type_diagnostic_item(cx, cx.typeck_results().expr_ty(&ok_args[0]), sym!(result_type)); let result_type = cx.typeck_results().expr_ty(&ok_args[0]); if let Some(error_type) = get_error_type(cx, result_type); if has_debug_impl(error_type, cx); then { span_lint_and_help( cx, OK_EXPECT, expr.span, "called `ok().expect()` on a `Result` value", None, "you can call `expect()` directly on the `Result`", ); } } } /// lint use of `map().flatten()` for `Iterators` and 'Options' fn lint_map_flatten<'tcx>(cx: &LateContext<'tcx>, expr: &'tcx hir::Expr<'_>, map_args: &'tcx [hir::Expr<'_>]) { // lint if caller of `.map().flatten()` is an Iterator if match_trait_method(cx, expr, &paths::ITERATOR) { let map_closure_ty = cx.typeck_results().expr_ty(&map_args[1]); let is_map_to_option = match map_closure_ty.kind { ty::Closure(_, _) | ty::FnDef(_, _) | ty::FnPtr(_) => { let map_closure_sig = match map_closure_ty.kind { ty::Closure(_, substs) => substs.as_closure().sig(), _ => map_closure_ty.fn_sig(cx.tcx), }; let map_closure_return_ty = cx.tcx.erase_late_bound_regions(&map_closure_sig.output()); is_type_diagnostic_item(cx, map_closure_return_ty, sym!(option_type)) }, _ => false, }; let method_to_use = if is_map_to_option { // `(...).map(...)` has type `impl Iterator> "filter_map" } else { // `(...).map(...)` has type `impl Iterator> "flat_map" }; let func_snippet = snippet(cx, map_args[1].span, ".."); let hint = format!(".{0}({1})", method_to_use, func_snippet); span_lint_and_sugg( cx, MAP_FLATTEN, expr.span.with_lo(map_args[0].span.hi()), "called `map(..).flatten()` on an `Iterator`", &format!("try using `{}` instead", method_to_use), hint, Applicability::MachineApplicable, ); } // lint if caller of `.map().flatten()` is an Option if is_type_diagnostic_item(cx, cx.typeck_results().expr_ty(&map_args[0]), sym!(option_type)) { let func_snippet = snippet(cx, map_args[1].span, ".."); let hint = format!(".and_then({})", func_snippet); span_lint_and_sugg( cx, MAP_FLATTEN, expr.span.with_lo(map_args[0].span.hi()), "called `map(..).flatten()` on an `Option`", "try using `and_then` instead", hint, Applicability::MachineApplicable, ); } } /// lint use of `map().unwrap_or_else()` for `Option`s and `Result`s /// Return true if lint triggered fn lint_map_unwrap_or_else<'tcx>( cx: &LateContext<'tcx>, expr: &'tcx hir::Expr<'_>, map_args: &'tcx [hir::Expr<'_>], unwrap_args: &'tcx [hir::Expr<'_>], ) -> bool { // lint if the caller of `map()` is an `Option` let is_option = is_type_diagnostic_item(cx, cx.typeck_results().expr_ty(&map_args[0]), sym!(option_type)); let is_result = is_type_diagnostic_item(cx, cx.typeck_results().expr_ty(&map_args[0]), sym!(result_type)); if is_option || is_result { // Don't make a suggestion that may fail to compile due to mutably borrowing // the same variable twice. let map_mutated_vars = mutated_variables(&map_args[0], cx); let unwrap_mutated_vars = mutated_variables(&unwrap_args[1], cx); if let (Some(map_mutated_vars), Some(unwrap_mutated_vars)) = (map_mutated_vars, unwrap_mutated_vars) { if map_mutated_vars.intersection(&unwrap_mutated_vars).next().is_some() { return false; } } else { return false; } // lint message let msg = if is_option { "called `map(f).unwrap_or_else(g)` on an `Option` value. This can be done more directly by calling \ `map_or_else(g, f)` instead" } else { "called `map(f).unwrap_or_else(g)` on a `Result` value. This can be done more directly by calling \ `.map_or_else(g, f)` instead" }; // get snippets for args to map() and unwrap_or_else() let map_snippet = snippet(cx, map_args[1].span, ".."); let unwrap_snippet = snippet(cx, unwrap_args[1].span, ".."); // lint, with note if neither arg is > 1 line and both map() and // unwrap_or_else() have the same span let multiline = map_snippet.lines().count() > 1 || unwrap_snippet.lines().count() > 1; let same_span = map_args[1].span.ctxt() == unwrap_args[1].span.ctxt(); if same_span && !multiline { span_lint_and_note( cx, MAP_UNWRAP_OR, expr.span, msg, None, &format!( "replace `map({0}).unwrap_or_else({1})` with `map_or_else({1}, {0})`", map_snippet, unwrap_snippet, ), ); return true; } else if same_span && multiline { span_lint(cx, MAP_UNWRAP_OR, expr.span, msg); return true; } } false } /// lint use of `_.map_or(None, _)` for `Option`s and `Result`s fn lint_map_or_none<'tcx>(cx: &LateContext<'tcx>, expr: &'tcx hir::Expr<'_>, map_or_args: &'tcx [hir::Expr<'_>]) { let is_option = is_type_diagnostic_item(cx, cx.typeck_results().expr_ty(&map_or_args[0]), sym!(option_type)); let is_result = is_type_diagnostic_item(cx, cx.typeck_results().expr_ty(&map_or_args[0]), sym!(result_type)); // There are two variants of this `map_or` lint: // (1) using `map_or` as an adapter from `Result` to `Option` // (2) using `map_or` as a combinator instead of `and_then` // // (For this lint) we don't care if any other type calls `map_or` if !is_option && !is_result { return; } let (lint_name, msg, instead, hint) = { let default_arg_is_none = if let hir::ExprKind::Path(ref qpath) = map_or_args[1].kind { match_qpath(qpath, &paths::OPTION_NONE) } else { return; }; if !default_arg_is_none { // nothing to lint! return; } let f_arg_is_some = if let hir::ExprKind::Path(ref qpath) = map_or_args[2].kind { match_qpath(qpath, &paths::OPTION_SOME) } else { false }; if is_option { let self_snippet = snippet(cx, map_or_args[0].span, ".."); let func_snippet = snippet(cx, map_or_args[2].span, ".."); let msg = "called `map_or(None, f)` on an `Option` value. This can be done more directly by calling \ `and_then(f)` instead"; ( OPTION_MAP_OR_NONE, msg, "try using `and_then` instead", format!("{0}.and_then({1})", self_snippet, func_snippet), ) } else if f_arg_is_some { let msg = "called `map_or(None, Some)` on a `Result` value. This can be done more directly by calling \ `ok()` instead"; let self_snippet = snippet(cx, map_or_args[0].span, ".."); ( RESULT_MAP_OR_INTO_OPTION, msg, "try using `ok` instead", format!("{0}.ok()", self_snippet), ) } else { // nothing to lint! return; } }; span_lint_and_sugg( cx, lint_name, expr.span, msg, instead, hint, Applicability::MachineApplicable, ); } /// lint use of `filter().next()` for `Iterators` fn lint_filter_next<'tcx>(cx: &LateContext<'tcx>, expr: &'tcx hir::Expr<'_>, filter_args: &'tcx [hir::Expr<'_>]) { // lint if caller of `.filter().next()` is an Iterator if match_trait_method(cx, expr, &paths::ITERATOR) { let msg = "called `filter(p).next()` on an `Iterator`. This is more succinctly expressed by calling \ `.find(p)` instead."; let filter_snippet = snippet(cx, filter_args[1].span, ".."); if filter_snippet.lines().count() <= 1 { // add note if not multi-line span_lint_and_note( cx, FILTER_NEXT, expr.span, msg, None, &format!("replace `filter({0}).next()` with `find({0})`", filter_snippet), ); } else { span_lint(cx, FILTER_NEXT, expr.span, msg); } } } /// lint use of `skip_while().next()` for `Iterators` fn lint_skip_while_next<'tcx>( cx: &LateContext<'tcx>, expr: &'tcx hir::Expr<'_>, _skip_while_args: &'tcx [hir::Expr<'_>], ) { // lint if caller of `.skip_while().next()` is an Iterator if match_trait_method(cx, expr, &paths::ITERATOR) { span_lint_and_help( cx, SKIP_WHILE_NEXT, expr.span, "called `skip_while(p).next()` on an `Iterator`", None, "this is more succinctly expressed by calling `.find(!p)` instead", ); } } /// lint use of `filter().map()` for `Iterators` fn lint_filter_map<'tcx>( cx: &LateContext<'tcx>, expr: &'tcx hir::Expr<'_>, _filter_args: &'tcx [hir::Expr<'_>], _map_args: &'tcx [hir::Expr<'_>], ) { // lint if caller of `.filter().map()` is an Iterator if match_trait_method(cx, expr, &paths::ITERATOR) { let msg = "called `filter(p).map(q)` on an `Iterator`"; let hint = "this is more succinctly expressed by calling `.filter_map(..)` instead"; span_lint_and_help(cx, FILTER_MAP, expr.span, msg, None, hint); } } /// lint use of `filter_map().next()` for `Iterators` fn lint_filter_map_next<'tcx>(cx: &LateContext<'tcx>, expr: &'tcx hir::Expr<'_>, filter_args: &'tcx [hir::Expr<'_>]) { if match_trait_method(cx, expr, &paths::ITERATOR) { let msg = "called `filter_map(p).next()` on an `Iterator`. This is more succinctly expressed by calling \ `.find_map(p)` instead."; let filter_snippet = snippet(cx, filter_args[1].span, ".."); if filter_snippet.lines().count() <= 1 { span_lint_and_note( cx, FILTER_MAP_NEXT, expr.span, msg, None, &format!("replace `filter_map({0}).next()` with `find_map({0})`", filter_snippet), ); } else { span_lint(cx, FILTER_MAP_NEXT, expr.span, msg); } } } /// lint use of `find().map()` for `Iterators` fn lint_find_map<'tcx>( cx: &LateContext<'tcx>, expr: &'tcx hir::Expr<'_>, _find_args: &'tcx [hir::Expr<'_>], map_args: &'tcx [hir::Expr<'_>], ) { // lint if caller of `.filter().map()` is an Iterator if match_trait_method(cx, &map_args[0], &paths::ITERATOR) { let msg = "called `find(p).map(q)` on an `Iterator`"; let hint = "this is more succinctly expressed by calling `.find_map(..)` instead"; span_lint_and_help(cx, FIND_MAP, expr.span, msg, None, hint); } } /// lint use of `filter_map().map()` for `Iterators` fn lint_filter_map_map<'tcx>( cx: &LateContext<'tcx>, expr: &'tcx hir::Expr<'_>, _filter_args: &'tcx [hir::Expr<'_>], _map_args: &'tcx [hir::Expr<'_>], ) { // lint if caller of `.filter().map()` is an Iterator if match_trait_method(cx, expr, &paths::ITERATOR) { let msg = "called `filter_map(p).map(q)` on an `Iterator`"; let hint = "this is more succinctly expressed by only calling `.filter_map(..)` instead"; span_lint_and_help(cx, FILTER_MAP, expr.span, msg, None, hint); } } /// lint use of `filter().flat_map()` for `Iterators` fn lint_filter_flat_map<'tcx>( cx: &LateContext<'tcx>, expr: &'tcx hir::Expr<'_>, _filter_args: &'tcx [hir::Expr<'_>], _map_args: &'tcx [hir::Expr<'_>], ) { // lint if caller of `.filter().flat_map()` is an Iterator if match_trait_method(cx, expr, &paths::ITERATOR) { let msg = "called `filter(p).flat_map(q)` on an `Iterator`"; let hint = "this is more succinctly expressed by calling `.flat_map(..)` \ and filtering by returning `iter::empty()`"; span_lint_and_help(cx, FILTER_MAP, expr.span, msg, None, hint); } } /// lint use of `filter_map().flat_map()` for `Iterators` fn lint_filter_map_flat_map<'tcx>( cx: &LateContext<'tcx>, expr: &'tcx hir::Expr<'_>, _filter_args: &'tcx [hir::Expr<'_>], _map_args: &'tcx [hir::Expr<'_>], ) { // lint if caller of `.filter_map().flat_map()` is an Iterator if match_trait_method(cx, expr, &paths::ITERATOR) { let msg = "called `filter_map(p).flat_map(q)` on an `Iterator`"; let hint = "this is more succinctly expressed by calling `.flat_map(..)` \ and filtering by returning `iter::empty()`"; span_lint_and_help(cx, FILTER_MAP, expr.span, msg, None, hint); } } /// lint use of `flat_map` for `Iterators` where `flatten` would be sufficient fn lint_flat_map_identity<'tcx>( cx: &LateContext<'tcx>, expr: &'tcx hir::Expr<'_>, flat_map_args: &'tcx [hir::Expr<'_>], flat_map_span: Span, ) { if match_trait_method(cx, expr, &paths::ITERATOR) { let arg_node = &flat_map_args[1].kind; let apply_lint = |message: &str| { span_lint_and_sugg( cx, FLAT_MAP_IDENTITY, flat_map_span.with_hi(expr.span.hi()), message, "try", "flatten()".to_string(), Applicability::MachineApplicable, ); }; if_chain! { if let hir::ExprKind::Closure(_, _, body_id, _, _) = arg_node; let body = cx.tcx.hir().body(*body_id); if let hir::PatKind::Binding(_, _, binding_ident, _) = body.params[0].pat.kind; if let hir::ExprKind::Path(hir::QPath::Resolved(_, ref path)) = body.value.kind; if path.segments.len() == 1; if path.segments[0].ident.as_str() == binding_ident.as_str(); then { apply_lint("called `flat_map(|x| x)` on an `Iterator`"); } } if_chain! { if let hir::ExprKind::Path(ref qpath) = arg_node; if match_qpath(qpath, &paths::STD_CONVERT_IDENTITY); then { apply_lint("called `flat_map(std::convert::identity)` on an `Iterator`"); } } } } /// lint searching an Iterator followed by `is_some()` fn lint_search_is_some<'tcx>( cx: &LateContext<'tcx>, expr: &'tcx hir::Expr<'_>, search_method: &str, search_args: &'tcx [hir::Expr<'_>], is_some_args: &'tcx [hir::Expr<'_>], method_span: Span, ) { // lint if caller of search is an Iterator if match_trait_method(cx, &is_some_args[0], &paths::ITERATOR) { let msg = format!( "called `is_some()` after searching an `Iterator` with {}. This is more succinctly \ expressed by calling `any()`.", search_method ); let search_snippet = snippet(cx, search_args[1].span, ".."); if search_snippet.lines().count() <= 1 { // suggest `any(|x| ..)` instead of `any(|&x| ..)` for `find(|&x| ..).is_some()` // suggest `any(|..| *..)` instead of `any(|..| **..)` for `find(|..| **..).is_some()` let any_search_snippet = if_chain! { if search_method == "find"; if let hir::ExprKind::Closure(_, _, body_id, ..) = search_args[1].kind; let closure_body = cx.tcx.hir().body(body_id); if let Some(closure_arg) = closure_body.params.get(0); then { if let hir::PatKind::Ref(..) = closure_arg.pat.kind { Some(search_snippet.replacen('&', "", 1)) } else if let Some(name) = get_arg_name(&closure_arg.pat) { Some(search_snippet.replace(&format!("*{}", name), &name.as_str())) } else { None } } else { None } }; // add note if not multi-line span_lint_and_sugg( cx, SEARCH_IS_SOME, method_span.with_hi(expr.span.hi()), &msg, "try this", format!( "any({})", any_search_snippet.as_ref().map_or(&*search_snippet, String::as_str) ), Applicability::MachineApplicable, ); } else { span_lint(cx, SEARCH_IS_SOME, expr.span, &msg); } } } /// Used for `lint_binary_expr_with_method_call`. #[derive(Copy, Clone)] struct BinaryExprInfo<'a> { expr: &'a hir::Expr<'a>, chain: &'a hir::Expr<'a>, other: &'a hir::Expr<'a>, eq: bool, } /// Checks for the `CHARS_NEXT_CMP` and `CHARS_LAST_CMP` lints. fn lint_binary_expr_with_method_call(cx: &LateContext<'_>, info: &mut BinaryExprInfo<'_>) { macro_rules! lint_with_both_lhs_and_rhs { ($func:ident, $cx:expr, $info:ident) => { if !$func($cx, $info) { ::std::mem::swap(&mut $info.chain, &mut $info.other); if $func($cx, $info) { return; } } }; } lint_with_both_lhs_and_rhs!(lint_chars_next_cmp, cx, info); lint_with_both_lhs_and_rhs!(lint_chars_last_cmp, cx, info); lint_with_both_lhs_and_rhs!(lint_chars_next_cmp_with_unwrap, cx, info); lint_with_both_lhs_and_rhs!(lint_chars_last_cmp_with_unwrap, cx, info); } /// Wrapper fn for `CHARS_NEXT_CMP` and `CHARS_LAST_CMP` lints. fn lint_chars_cmp( cx: &LateContext<'_>, info: &BinaryExprInfo<'_>, chain_methods: &[&str], lint: &'static Lint, suggest: &str, ) -> bool { if_chain! { if let Some(args) = method_chain_args(info.chain, chain_methods); if let hir::ExprKind::Call(ref fun, ref arg_char) = info.other.kind; if arg_char.len() == 1; if let hir::ExprKind::Path(ref qpath) = fun.kind; if let Some(segment) = single_segment_path(qpath); if segment.ident.name == sym!(Some); then { let mut applicability = Applicability::MachineApplicable; let self_ty = walk_ptrs_ty(cx.typeck_results().expr_ty_adjusted(&args[0][0])); if self_ty.kind != ty::Str { return false; } span_lint_and_sugg( cx, lint, info.expr.span, &format!("you should use the `{}` method", suggest), "like this", format!("{}{}.{}({})", if info.eq { "" } else { "!" }, snippet_with_applicability(cx, args[0][0].span, "_", &mut applicability), suggest, snippet_with_applicability(cx, arg_char[0].span, "_", &mut applicability)), applicability, ); return true; } } false } /// Checks for the `CHARS_NEXT_CMP` lint. fn lint_chars_next_cmp<'tcx>(cx: &LateContext<'tcx>, info: &BinaryExprInfo<'_>) -> bool { lint_chars_cmp(cx, info, &["chars", "next"], CHARS_NEXT_CMP, "starts_with") } /// Checks for the `CHARS_LAST_CMP` lint. fn lint_chars_last_cmp<'tcx>(cx: &LateContext<'tcx>, info: &BinaryExprInfo<'_>) -> bool { if lint_chars_cmp(cx, info, &["chars", "last"], CHARS_LAST_CMP, "ends_with") { true } else { lint_chars_cmp(cx, info, &["chars", "next_back"], CHARS_LAST_CMP, "ends_with") } } /// Wrapper fn for `CHARS_NEXT_CMP` and `CHARS_LAST_CMP` lints with `unwrap()`. fn lint_chars_cmp_with_unwrap<'tcx>( cx: &LateContext<'tcx>, info: &BinaryExprInfo<'_>, chain_methods: &[&str], lint: &'static Lint, suggest: &str, ) -> bool { if_chain! { if let Some(args) = method_chain_args(info.chain, chain_methods); if let hir::ExprKind::Lit(ref lit) = info.other.kind; if let ast::LitKind::Char(c) = lit.node; then { let mut applicability = Applicability::MachineApplicable; span_lint_and_sugg( cx, lint, info.expr.span, &format!("you should use the `{}` method", suggest), "like this", format!("{}{}.{}('{}')", if info.eq { "" } else { "!" }, snippet_with_applicability(cx, args[0][0].span, "_", &mut applicability), suggest, c), applicability, ); true } else { false } } } /// Checks for the `CHARS_NEXT_CMP` lint with `unwrap()`. fn lint_chars_next_cmp_with_unwrap<'tcx>(cx: &LateContext<'tcx>, info: &BinaryExprInfo<'_>) -> bool { lint_chars_cmp_with_unwrap(cx, info, &["chars", "next", "unwrap"], CHARS_NEXT_CMP, "starts_with") } /// Checks for the `CHARS_LAST_CMP` lint with `unwrap()`. fn lint_chars_last_cmp_with_unwrap<'tcx>(cx: &LateContext<'tcx>, info: &BinaryExprInfo<'_>) -> bool { if lint_chars_cmp_with_unwrap(cx, info, &["chars", "last", "unwrap"], CHARS_LAST_CMP, "ends_with") { true } else { lint_chars_cmp_with_unwrap(cx, info, &["chars", "next_back", "unwrap"], CHARS_LAST_CMP, "ends_with") } } fn get_hint_if_single_char_arg( cx: &LateContext<'_>, arg: &hir::Expr<'_>, applicability: &mut Applicability, ) -> Option { if_chain! { if let hir::ExprKind::Lit(lit) = &arg.kind; if let ast::LitKind::Str(r, style) = lit.node; let string = r.as_str(); if string.len() == 1; then { let snip = snippet_with_applicability(cx, arg.span, &string, applicability); let ch = if let ast::StrStyle::Raw(nhash) = style { let nhash = nhash as usize; // for raw string: r##"a"## &snip[(nhash + 2)..(snip.len() - 1 - nhash)] } else { // for regular string: "a" &snip[1..(snip.len() - 1)] }; let hint = format!("'{}'", if ch == "'" { "\\'" } else { ch }); Some(hint) } else { None } } } /// lint for length-1 `str`s for methods in `PATTERN_METHODS` fn lint_single_char_pattern(cx: &LateContext<'_>, _expr: &hir::Expr<'_>, arg: &hir::Expr<'_>) { let mut applicability = Applicability::MachineApplicable; if let Some(hint) = get_hint_if_single_char_arg(cx, arg, &mut applicability) { span_lint_and_sugg( cx, SINGLE_CHAR_PATTERN, arg.span, "single-character string constant used as pattern", "try using a `char` instead", hint, applicability, ); } } /// lint for length-1 `str`s as argument for `push_str` fn lint_single_char_push_string(cx: &LateContext<'_>, expr: &hir::Expr<'_>, args: &[hir::Expr<'_>]) { let mut applicability = Applicability::MachineApplicable; if let Some(extension_string) = get_hint_if_single_char_arg(cx, &args[1], &mut applicability) { let base_string_snippet = snippet_with_applicability(cx, args[0].span, "_", &mut applicability); let sugg = format!("{}.push({})", base_string_snippet, extension_string); span_lint_and_sugg( cx, SINGLE_CHAR_PUSH_STR, expr.span, "calling `push_str()` using a single-character string literal", "consider using `push` with a character literal", sugg, applicability, ); } } /// Checks for the `USELESS_ASREF` lint. fn lint_asref(cx: &LateContext<'_>, expr: &hir::Expr<'_>, call_name: &str, as_ref_args: &[hir::Expr<'_>]) { // when we get here, we've already checked that the call name is "as_ref" or "as_mut" // check if the call is to the actual `AsRef` or `AsMut` trait if match_trait_method(cx, expr, &paths::ASREF_TRAIT) || match_trait_method(cx, expr, &paths::ASMUT_TRAIT) { // check if the type after `as_ref` or `as_mut` is the same as before let recvr = &as_ref_args[0]; let rcv_ty = cx.typeck_results().expr_ty(recvr); let res_ty = cx.typeck_results().expr_ty(expr); let (base_res_ty, res_depth) = walk_ptrs_ty_depth(res_ty); let (base_rcv_ty, rcv_depth) = walk_ptrs_ty_depth(rcv_ty); if base_rcv_ty == base_res_ty && rcv_depth >= res_depth { // allow the `as_ref` or `as_mut` if it is followed by another method call if_chain! { if let Some(parent) = get_parent_expr(cx, expr); if let hir::ExprKind::MethodCall(_, ref span, _, _) = parent.kind; if span != &expr.span; then { return; } } let mut applicability = Applicability::MachineApplicable; span_lint_and_sugg( cx, USELESS_ASREF, expr.span, &format!("this call to `{}` does nothing", call_name), "try this", snippet_with_applicability(cx, recvr.span, "_", &mut applicability).to_string(), applicability, ); } } } fn ty_has_iter_method(cx: &LateContext<'_>, self_ref_ty: Ty<'_>) -> Option<(&'static str, &'static str)> { has_iter_method(cx, self_ref_ty).map(|ty_name| { let mutbl = match self_ref_ty.kind { ty::Ref(_, _, mutbl) => mutbl, _ => unreachable!(), }; let method_name = match mutbl { hir::Mutability::Not => "iter", hir::Mutability::Mut => "iter_mut", }; (ty_name, method_name) }) } fn lint_into_iter(cx: &LateContext<'_>, expr: &hir::Expr<'_>, self_ref_ty: Ty<'_>, method_span: Span) { if !match_trait_method(cx, expr, &paths::INTO_ITERATOR) { return; } if let Some((kind, method_name)) = ty_has_iter_method(cx, self_ref_ty) { span_lint_and_sugg( cx, INTO_ITER_ON_REF, method_span, &format!( "this `.into_iter()` call is equivalent to `.{}()` and will not move the `{}`", method_name, kind, ), "call directly", method_name.to_string(), Applicability::MachineApplicable, ); } } /// lint for `MaybeUninit::uninit().assume_init()` (we already have the latter) fn lint_maybe_uninit(cx: &LateContext<'_>, expr: &hir::Expr<'_>, outer: &hir::Expr<'_>) { if_chain! { if let hir::ExprKind::Call(ref callee, ref args) = expr.kind; if args.is_empty(); if let hir::ExprKind::Path(ref path) = callee.kind; if match_qpath(path, &paths::MEM_MAYBEUNINIT_UNINIT); if !is_maybe_uninit_ty_valid(cx, cx.typeck_results().expr_ty_adjusted(outer)); then { span_lint( cx, UNINIT_ASSUMED_INIT, outer.span, "this call for this type may be undefined behavior" ); } } } fn is_maybe_uninit_ty_valid(cx: &LateContext<'_>, ty: Ty<'_>) -> bool { match ty.kind { ty::Array(ref component, _) => is_maybe_uninit_ty_valid(cx, component), ty::Tuple(ref types) => types.types().all(|ty| is_maybe_uninit_ty_valid(cx, ty)), ty::Adt(ref adt, _) => match_def_path(cx, adt.did, &paths::MEM_MAYBEUNINIT), _ => false, } } fn lint_suspicious_map(cx: &LateContext<'_>, expr: &hir::Expr<'_>) { span_lint_and_help( cx, SUSPICIOUS_MAP, expr.span, "this call to `map()` won't have an effect on the call to `count()`", None, "make sure you did not confuse `map` with `filter` or `for_each`", ); } /// lint use of `_.as_ref().map(Deref::deref)` for `Option`s fn lint_option_as_ref_deref<'tcx>( cx: &LateContext<'tcx>, expr: &hir::Expr<'_>, as_ref_args: &[hir::Expr<'_>], map_args: &[hir::Expr<'_>], is_mut: bool, ) { let same_mutability = |m| (is_mut && m == &hir::Mutability::Mut) || (!is_mut && m == &hir::Mutability::Not); let option_ty = cx.typeck_results().expr_ty(&as_ref_args[0]); if !is_type_diagnostic_item(cx, option_ty, sym!(option_type)) { return; } let deref_aliases: [&[&str]; 9] = [ &paths::DEREF_TRAIT_METHOD, &paths::DEREF_MUT_TRAIT_METHOD, &paths::CSTRING_AS_C_STR, &paths::OS_STRING_AS_OS_STR, &paths::PATH_BUF_AS_PATH, &paths::STRING_AS_STR, &paths::STRING_AS_MUT_STR, &paths::VEC_AS_SLICE, &paths::VEC_AS_MUT_SLICE, ]; let is_deref = match map_args[1].kind { hir::ExprKind::Path(ref expr_qpath) => cx .qpath_res(expr_qpath, map_args[1].hir_id) .opt_def_id() .map_or(false, |fun_def_id| { deref_aliases.iter().any(|path| match_def_path(cx, fun_def_id, path)) }), hir::ExprKind::Closure(_, _, body_id, _, _) => { let closure_body = cx.tcx.hir().body(body_id); let closure_expr = remove_blocks(&closure_body.value); match &closure_expr.kind { hir::ExprKind::MethodCall(_, _, args, _) => { if_chain! { if args.len() == 1; if let hir::ExprKind::Path(qpath) = &args[0].kind; if let hir::def::Res::Local(local_id) = cx.qpath_res(qpath, args[0].hir_id); if closure_body.params[0].pat.hir_id == local_id; let adj = cx .typeck_results() .expr_adjustments(&args[0]) .iter() .map(|x| &x.kind) .collect::>(); if let [ty::adjustment::Adjust::Deref(None), ty::adjustment::Adjust::Borrow(_)] = *adj; then { let method_did = cx.typeck_results().type_dependent_def_id(closure_expr.hir_id).unwrap(); deref_aliases.iter().any(|path| match_def_path(cx, method_did, path)) } else { false } } }, hir::ExprKind::AddrOf(hir::BorrowKind::Ref, m, ref inner) if same_mutability(m) => { if_chain! { if let hir::ExprKind::Unary(hir::UnOp::UnDeref, ref inner1) = inner.kind; if let hir::ExprKind::Unary(hir::UnOp::UnDeref, ref inner2) = inner1.kind; if let hir::ExprKind::Path(ref qpath) = inner2.kind; if let hir::def::Res::Local(local_id) = cx.qpath_res(qpath, inner2.hir_id); then { closure_body.params[0].pat.hir_id == local_id } else { false } } }, _ => false, } }, _ => false, }; if is_deref { let current_method = if is_mut { format!(".as_mut().map({})", snippet(cx, map_args[1].span, "..")) } else { format!(".as_ref().map({})", snippet(cx, map_args[1].span, "..")) }; let method_hint = if is_mut { "as_deref_mut" } else { "as_deref" }; let hint = format!("{}.{}()", snippet(cx, as_ref_args[0].span, ".."), method_hint); let suggestion = format!("try using {} instead", method_hint); let msg = format!( "called `{0}` on an Option value. This can be done more directly \ by calling `{1}` instead", current_method, hint ); span_lint_and_sugg( cx, OPTION_AS_REF_DEREF, expr.span, &msg, &suggestion, hint, Applicability::MachineApplicable, ); } } /// Given a `Result` type, return its error type (`E`). fn get_error_type<'a>(cx: &LateContext<'_>, ty: Ty<'a>) -> Option> { match ty.kind { ty::Adt(_, substs) if is_type_diagnostic_item(cx, ty, sym!(result_type)) => substs.types().nth(1), _ => None, } } /// This checks whether a given type is known to implement Debug. fn has_debug_impl<'tcx>(ty: Ty<'tcx>, cx: &LateContext<'tcx>) -> bool { cx.tcx .get_diagnostic_item(sym::debug_trait) .map_or(false, |debug| implements_trait(cx, ty, debug, &[])) } enum Convention { Eq(&'static str), StartsWith(&'static str), } #[rustfmt::skip] const CONVENTIONS: [(Convention, &[SelfKind]); 7] = [ (Convention::Eq("new"), &[SelfKind::No]), (Convention::StartsWith("as_"), &[SelfKind::Ref, SelfKind::RefMut]), (Convention::StartsWith("from_"), &[SelfKind::No]), (Convention::StartsWith("into_"), &[SelfKind::Value]), (Convention::StartsWith("is_"), &[SelfKind::Ref, SelfKind::No]), (Convention::Eq("to_mut"), &[SelfKind::RefMut]), (Convention::StartsWith("to_"), &[SelfKind::Ref]), ]; const FN_HEADER: hir::FnHeader = hir::FnHeader { unsafety: hir::Unsafety::Normal, constness: hir::Constness::NotConst, asyncness: hir::IsAsync::NotAsync, abi: rustc_target::spec::abi::Abi::Rust, }; struct ShouldImplTraitCase { trait_name: &'static str, method_name: &'static str, param_count: usize, fn_header: hir::FnHeader, // implicit self kind expected (none, self, &self, ...) self_kind: SelfKind, // checks against the output type output_type: OutType, // certain methods with explicit lifetimes can't implement the equivalent trait method lint_explicit_lifetime: bool, } impl ShouldImplTraitCase { const fn new( trait_name: &'static str, method_name: &'static str, param_count: usize, fn_header: hir::FnHeader, self_kind: SelfKind, output_type: OutType, lint_explicit_lifetime: bool, ) -> ShouldImplTraitCase { ShouldImplTraitCase { trait_name, method_name, param_count, fn_header, self_kind, output_type, lint_explicit_lifetime, } } fn lifetime_param_cond(&self, impl_item: &hir::ImplItem<'_>) -> bool { self.lint_explicit_lifetime || !impl_item.generics.params.iter().any(|p| { matches!( p.kind, hir::GenericParamKind::Lifetime { kind: hir::LifetimeParamKind::Explicit } ) }) } } #[rustfmt::skip] const TRAIT_METHODS: [ShouldImplTraitCase; 30] = [ ShouldImplTraitCase::new("std::ops::Add", "add", 2, FN_HEADER, SelfKind::Value, OutType::Any, true), ShouldImplTraitCase::new("std::convert::AsMut", "as_mut", 1, FN_HEADER, SelfKind::RefMut, OutType::Ref, true), ShouldImplTraitCase::new("std::convert::AsRef", "as_ref", 1, FN_HEADER, SelfKind::Ref, OutType::Ref, true), ShouldImplTraitCase::new("std::ops::BitAnd", "bitand", 2, FN_HEADER, SelfKind::Value, OutType::Any, true), ShouldImplTraitCase::new("std::ops::BitOr", "bitor", 2, FN_HEADER, SelfKind::Value, OutType::Any, true), ShouldImplTraitCase::new("std::ops::BitXor", "bitxor", 2, FN_HEADER, SelfKind::Value, OutType::Any, true), ShouldImplTraitCase::new("std::borrow::Borrow", "borrow", 1, FN_HEADER, SelfKind::Ref, OutType::Ref, true), ShouldImplTraitCase::new("std::borrow::BorrowMut", "borrow_mut", 1, FN_HEADER, SelfKind::RefMut, OutType::Ref, true), ShouldImplTraitCase::new("std::clone::Clone", "clone", 1, FN_HEADER, SelfKind::Ref, OutType::Any, true), ShouldImplTraitCase::new("std::cmp::Ord", "cmp", 2, FN_HEADER, SelfKind::Ref, OutType::Any, true), // FIXME: default doesn't work ShouldImplTraitCase::new("std::default::Default", "default", 0, FN_HEADER, SelfKind::No, OutType::Any, true), ShouldImplTraitCase::new("std::ops::Deref", "deref", 1, FN_HEADER, SelfKind::Ref, OutType::Ref, true), ShouldImplTraitCase::new("std::ops::DerefMut", "deref_mut", 1, FN_HEADER, SelfKind::RefMut, OutType::Ref, true), ShouldImplTraitCase::new("std::ops::Div", "div", 2, FN_HEADER, SelfKind::Value, OutType::Any, true), ShouldImplTraitCase::new("std::ops::Drop", "drop", 1, FN_HEADER, SelfKind::RefMut, OutType::Unit, true), ShouldImplTraitCase::new("std::cmp::PartialEq", "eq", 2, FN_HEADER, SelfKind::Ref, OutType::Bool, true), ShouldImplTraitCase::new("std::iter::FromIterator", "from_iter", 1, FN_HEADER, SelfKind::No, OutType::Any, true), ShouldImplTraitCase::new("std::str::FromStr", "from_str", 1, FN_HEADER, SelfKind::No, OutType::Any, true), ShouldImplTraitCase::new("std::hash::Hash", "hash", 2, FN_HEADER, SelfKind::Ref, OutType::Unit, true), ShouldImplTraitCase::new("std::ops::Index", "index", 2, FN_HEADER, SelfKind::Ref, OutType::Ref, true), ShouldImplTraitCase::new("std::ops::IndexMut", "index_mut", 2, FN_HEADER, SelfKind::RefMut, OutType::Ref, true), ShouldImplTraitCase::new("std::iter::IntoIterator", "into_iter", 1, FN_HEADER, SelfKind::Value, OutType::Any, true), ShouldImplTraitCase::new("std::ops::Mul", "mul", 2, FN_HEADER, SelfKind::Value, OutType::Any, true), ShouldImplTraitCase::new("std::ops::Neg", "neg", 1, FN_HEADER, SelfKind::Value, OutType::Any, true), ShouldImplTraitCase::new("std::iter::Iterator", "next", 1, FN_HEADER, SelfKind::RefMut, OutType::Any, false), ShouldImplTraitCase::new("std::ops::Not", "not", 1, FN_HEADER, SelfKind::Value, OutType::Any, true), ShouldImplTraitCase::new("std::ops::Rem", "rem", 2, FN_HEADER, SelfKind::Value, OutType::Any, true), ShouldImplTraitCase::new("std::ops::Shl", "shl", 2, FN_HEADER, SelfKind::Value, OutType::Any, true), ShouldImplTraitCase::new("std::ops::Shr", "shr", 2, FN_HEADER, SelfKind::Value, OutType::Any, true), ShouldImplTraitCase::new("std::ops::Sub", "sub", 2, FN_HEADER, SelfKind::Value, OutType::Any, true), ]; #[rustfmt::skip] const PATTERN_METHODS: [(&str, usize); 17] = [ ("contains", 1), ("starts_with", 1), ("ends_with", 1), ("find", 1), ("rfind", 1), ("split", 1), ("rsplit", 1), ("split_terminator", 1), ("rsplit_terminator", 1), ("splitn", 2), ("rsplitn", 2), ("matches", 1), ("rmatches", 1), ("match_indices", 1), ("rmatch_indices", 1), ("trim_start_matches", 1), ("trim_end_matches", 1), ]; #[derive(Clone, Copy, PartialEq, Debug)] enum SelfKind { Value, Ref, RefMut, No, } impl SelfKind { fn matches<'a>(self, cx: &LateContext<'a>, parent_ty: Ty<'a>, ty: Ty<'a>) -> bool { fn matches_value<'a>(cx: &LateContext<'a>, parent_ty: Ty<'_>, ty: Ty<'_>) -> bool { if ty == parent_ty { true } else if ty.is_box() { ty.boxed_ty() == parent_ty } else if is_type_diagnostic_item(cx, ty, sym::Rc) || is_type_diagnostic_item(cx, ty, sym::Arc) { if let ty::Adt(_, substs) = ty.kind { substs.types().next().map_or(false, |t| t == parent_ty) } else { false } } else { false } } fn matches_ref<'a>(cx: &LateContext<'a>, mutability: hir::Mutability, parent_ty: Ty<'a>, ty: Ty<'a>) -> bool { if let ty::Ref(_, t, m) = ty.kind { return m == mutability && t == parent_ty; } let trait_path = match mutability { hir::Mutability::Not => &paths::ASREF_TRAIT, hir::Mutability::Mut => &paths::ASMUT_TRAIT, }; let trait_def_id = match get_trait_def_id(cx, trait_path) { Some(did) => did, None => return false, }; implements_trait(cx, ty, trait_def_id, &[parent_ty.into()]) } match self { Self::Value => matches_value(cx, parent_ty, ty), Self::Ref => matches_ref(cx, hir::Mutability::Not, parent_ty, ty) || ty == parent_ty && is_copy(cx, ty), Self::RefMut => matches_ref(cx, hir::Mutability::Mut, parent_ty, ty), Self::No => ty != parent_ty, } } #[must_use] fn description(self) -> &'static str { match self { Self::Value => "self by value", Self::Ref => "self by reference", Self::RefMut => "self by mutable reference", Self::No => "no self", } } } impl Convention { #[must_use] fn check(&self, other: &str) -> bool { match *self { Self::Eq(this) => this == other, Self::StartsWith(this) => other.starts_with(this) && this != other, } } } impl fmt::Display for Convention { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> { match *self { Self::Eq(this) => this.fmt(f), Self::StartsWith(this) => this.fmt(f).and_then(|_| '*'.fmt(f)), } } } #[derive(Clone, Copy)] enum OutType { Unit, Bool, Any, Ref, } impl OutType { fn matches(self, cx: &LateContext<'_>, ty: &hir::FnRetTy<'_>) -> bool { let is_unit = |ty: &hir::Ty<'_>| SpanlessEq::new(cx).eq_ty_kind(&ty.kind, &hir::TyKind::Tup(&[])); match (self, ty) { (Self::Unit, &hir::FnRetTy::DefaultReturn(_)) => true, (Self::Unit, &hir::FnRetTy::Return(ref ty)) if is_unit(ty) => true, (Self::Bool, &hir::FnRetTy::Return(ref ty)) if is_bool(ty) => true, (Self::Any, &hir::FnRetTy::Return(ref ty)) if !is_unit(ty) => true, (Self::Ref, &hir::FnRetTy::Return(ref ty)) => matches!(ty.kind, hir::TyKind::Rptr(_, _)), _ => false, } } } fn is_bool(ty: &hir::Ty<'_>) -> bool { if let hir::TyKind::Path(ref p) = ty.kind { match_qpath(p, &["bool"]) } else { false } } // Returns `true` if `expr` contains a return expression fn contains_return(expr: &hir::Expr<'_>) -> bool { struct RetCallFinder { found: bool, } impl<'tcx> intravisit::Visitor<'tcx> for RetCallFinder { type Map = Map<'tcx>; fn visit_expr(&mut self, expr: &'tcx hir::Expr<'_>) { if self.found { return; } if let hir::ExprKind::Ret(..) = &expr.kind { self.found = true; } else { intravisit::walk_expr(self, expr); } } fn nested_visit_map(&mut self) -> intravisit::NestedVisitorMap { intravisit::NestedVisitorMap::None } } let mut visitor = RetCallFinder { found: false }; visitor.visit_expr(expr); visitor.found } fn check_pointer_offset(cx: &LateContext<'_>, expr: &hir::Expr<'_>, args: &[hir::Expr<'_>]) { if_chain! { if args.len() == 2; if let ty::RawPtr(ty::TypeAndMut { ref ty, .. }) = cx.typeck_results().expr_ty(&args[0]).kind; if let Ok(layout) = cx.tcx.layout_of(cx.param_env.and(ty)); if layout.is_zst(); then { span_lint(cx, ZST_OFFSET, expr.span, "offset calculation on zero-sized value"); } } } fn lint_filetype_is_file(cx: &LateContext<'_>, expr: &hir::Expr<'_>, args: &[hir::Expr<'_>]) { let ty = cx.typeck_results().expr_ty(&args[0]); if !match_type(cx, ty, &paths::FILE_TYPE) { return; } let span: Span; let verb: &str; let lint_unary: &str; let help_unary: &str; if_chain! { if let Some(parent) = get_parent_expr(cx, expr); if let hir::ExprKind::Unary(op, _) = parent.kind; if op == hir::UnOp::UnNot; then { lint_unary = "!"; verb = "denies"; help_unary = ""; span = parent.span; } else { lint_unary = ""; verb = "covers"; help_unary = "!"; span = expr.span; } } let lint_msg = format!("`{}FileType::is_file()` only {} regular files", lint_unary, verb); let help_msg = format!("use `{}FileType::is_dir()` instead", help_unary); span_lint_and_help(cx, FILETYPE_IS_FILE, span, &lint_msg, None, &help_msg); } fn fn_header_equals(expected: hir::FnHeader, actual: hir::FnHeader) -> bool { expected.constness == actual.constness && expected.unsafety == actual.unsafety && expected.asyncness == actual.asyncness }