//! This module contains functions for retrieve the original AST from lowered `hir`. #![deny(missing_docs_in_private_items)] use rustc::hir; use rustc::lint::LateContext; use syntax::ast; use utils::{is_expn_of, match_path, match_def_path, resolve_node, paths}; /// Convert a hir binary operator to the corresponding `ast` type. pub fn binop(op: hir::BinOp_) -> ast::BinOpKind { match op { hir::BiEq => ast::BinOpKind::Eq, hir::BiGe => ast::BinOpKind::Ge, hir::BiGt => ast::BinOpKind::Gt, hir::BiLe => ast::BinOpKind::Le, hir::BiLt => ast::BinOpKind::Lt, hir::BiNe => ast::BinOpKind::Ne, hir::BiOr => ast::BinOpKind::Or, hir::BiAdd => ast::BinOpKind::Add, hir::BiAnd => ast::BinOpKind::And, hir::BiBitAnd => ast::BinOpKind::BitAnd, hir::BiBitOr => ast::BinOpKind::BitOr, hir::BiBitXor => ast::BinOpKind::BitXor, hir::BiDiv => ast::BinOpKind::Div, hir::BiMul => ast::BinOpKind::Mul, hir::BiRem => ast::BinOpKind::Rem, hir::BiShl => ast::BinOpKind::Shl, hir::BiShr => ast::BinOpKind::Shr, hir::BiSub => ast::BinOpKind::Sub, } } /// Represent a range akin to `ast::ExprKind::Range`. #[derive(Debug, Copy, Clone)] pub struct Range<'a> { /// The lower bound of the range, or `None` for ranges such as `..X`. pub start: Option<&'a hir::Expr>, /// The upper bound of the range, or `None` for ranges such as `X..`. pub end: Option<&'a hir::Expr>, /// Whether the interval is open or closed. pub limits: ast::RangeLimits, } /// Higher a `hir` range to something similar to `ast::ExprKind::Range`. pub fn range(expr: &hir::Expr) -> Option { /// Find the field named `name` in the field. Always return `Some` for convenience. fn get_field<'a>(name: &str, fields: &'a [hir::Field]) -> Option<&'a hir::Expr> { let expr = &fields.iter() .find(|field| field.name.node == name) .unwrap_or_else(|| panic!("missing {} field for range", name)) .expr; Some(expr) } // The range syntax is expanded to literal paths starting with `core` or `std` depending on // `#[no_std]`. Testing both instead of resolving the paths. match expr.node { hir::ExprPath(ref path) => { if match_path(path, &paths::RANGE_FULL_STD) || match_path(path, &paths::RANGE_FULL) { Some(Range { start: None, end: None, limits: ast::RangeLimits::HalfOpen, }) } else { None } }, hir::ExprStruct(ref path, ref fields, None) => { if match_path(path, &paths::RANGE_FROM_STD) || match_path(path, &paths::RANGE_FROM) { Some(Range { start: get_field("start", fields), end: None, limits: ast::RangeLimits::HalfOpen, }) } else if match_path(path, &paths::RANGE_INCLUSIVE_NON_EMPTY_STD) || match_path(path, &paths::RANGE_INCLUSIVE_NON_EMPTY) { Some(Range { start: get_field("start", fields), end: get_field("end", fields), limits: ast::RangeLimits::Closed, }) } else if match_path(path, &paths::RANGE_STD) || match_path(path, &paths::RANGE) { Some(Range { start: get_field("start", fields), end: get_field("end", fields), limits: ast::RangeLimits::HalfOpen, }) } else if match_path(path, &paths::RANGE_TO_INCLUSIVE_STD) || match_path(path, &paths::RANGE_TO_INCLUSIVE) { Some(Range { start: None, end: get_field("end", fields), limits: ast::RangeLimits::Closed, }) } else if match_path(path, &paths::RANGE_TO_STD) || match_path(path, &paths::RANGE_TO) { Some(Range { start: None, end: get_field("end", fields), limits: ast::RangeLimits::HalfOpen, }) } else { None } }, _ => None, } } /// Checks if a `let` decl is from a `for` loop desugaring. pub fn is_from_for_desugar(decl: &hir::Decl) -> bool { if_let_chain! {[ let hir::DeclLocal(ref loc) = decl.node, let Some(ref expr) = loc.init, let hir::ExprMatch(_, _, hir::MatchSource::ForLoopDesugar) = expr.node, ], { return true; }} false } /// Recover the essential nodes of a desugared for loop: /// `for pat in arg { body }` becomes `(pat, arg, body)`. pub fn for_loop(expr: &hir::Expr) -> Option<(&hir::Pat, &hir::Expr, &hir::Expr)> { if_let_chain! {[ let hir::ExprMatch(ref iterexpr, ref arms, _) = expr.node, let hir::ExprCall(_, ref iterargs) = iterexpr.node, iterargs.len() == 1 && arms.len() == 1 && arms[0].guard.is_none(), let hir::ExprLoop(ref block, _, _) = arms[0].body.node, block.stmts.is_empty(), let Some(ref loopexpr) = block.expr, let hir::ExprMatch(_, ref innerarms, hir::MatchSource::ForLoopDesugar) = loopexpr.node, innerarms.len() == 2 && innerarms[0].pats.len() == 1, let hir::PatKind::TupleStruct(_, ref somepats, _) = innerarms[0].pats[0].node, somepats.len() == 1 ], { return Some((&somepats[0], &iterargs[0], &innerarms[0].body)); }} None } /// Represent the pre-expansion arguments of a `vec!` invocation. pub enum VecArgs<'a> { /// `vec![elem; len]` Repeat(&'a hir::Expr, &'a hir::Expr), /// `vec![a, b, c]` Vec(&'a [hir::Expr]), } /// Returns the arguments of the `vec!` macro if this expression was expanded from `vec!`. pub fn vec_macro<'e>(cx: &LateContext, expr: &'e hir::Expr) -> Option> { if_let_chain!{[ let hir::ExprCall(ref fun, ref args) = expr.node, let hir::ExprPath(ref path) = fun.node, is_expn_of(cx, fun.span, "vec").is_some(), ], { let fun_def = resolve_node(cx, path, fun.id); return if match_def_path(cx.tcx, fun_def.def_id(), &paths::VEC_FROM_ELEM) && args.len() == 2 { // `vec![elem; size]` case Some(VecArgs::Repeat(&args[0], &args[1])) } else if match_def_path(cx.tcx, fun_def.def_id(), &paths::SLICE_INTO_VEC) && args.len() == 1 { // `vec![a, b, c]` case if_let_chain!{[ let hir::ExprBox(ref boxed) = args[0].node, let hir::ExprArray(ref args) = boxed.node ], { return Some(VecArgs::Vec(&*args)); }} None } else { None }; }} None }