use crate::utils::{snippet_with_applicability, span_lint_and_sugg}; use rustc::lint::{EarlyContext, EarlyLintPass}; use rustc_errors::Applicability; use rustc_session::{declare_lint_pass, declare_tool_lint}; use rustc_span::source_map::Spanned; use syntax::ast::*; declare_clippy_lint! { /// **What it does:** Checks for operations where precedence may be unclear /// and suggests to add parentheses. Currently it catches the following: /// * mixed usage of arithmetic and bit shifting/combining operators without /// parentheses /// * a "negative" numeric literal (which is really a unary `-` followed by a /// numeric literal) /// followed by a method call /// /// **Why is this bad?** Not everyone knows the precedence of those operators by /// heart, so expressions like these may trip others trying to reason about the /// code. /// /// **Known problems:** None. /// /// **Example:** /// * `1 << 2 + 3` equals 32, while `(1 << 2) + 3` equals 7 /// * `-1i32.abs()` equals -1, while `(-1i32).abs()` equals 1 pub PRECEDENCE, complexity, "operations where precedence may be unclear" } declare_lint_pass!(Precedence => [PRECEDENCE]); impl EarlyLintPass for Precedence { fn check_expr(&mut self, cx: &EarlyContext<'_>, expr: &Expr) { if expr.span.from_expansion() { return; } if let ExprKind::Binary(Spanned { node: op, .. }, ref left, ref right) = expr.kind { let span_sugg = |expr: &Expr, sugg, appl| { span_lint_and_sugg( cx, PRECEDENCE, expr.span, "operator precedence can trip the unwary", "consider parenthesizing your expression", sugg, appl, ); }; if !is_bit_op(op) { return; } let mut applicability = Applicability::MachineApplicable; match (is_arith_expr(left), is_arith_expr(right)) { (true, true) => { let sugg = format!( "({}) {} ({})", snippet_with_applicability(cx, left.span, "..", &mut applicability), op.to_string(), snippet_with_applicability(cx, right.span, "..", &mut applicability) ); span_sugg(expr, sugg, applicability); }, (true, false) => { let sugg = format!( "({}) {} {}", snippet_with_applicability(cx, left.span, "..", &mut applicability), op.to_string(), snippet_with_applicability(cx, right.span, "..", &mut applicability) ); span_sugg(expr, sugg, applicability); }, (false, true) => { let sugg = format!( "{} {} ({})", snippet_with_applicability(cx, left.span, "..", &mut applicability), op.to_string(), snippet_with_applicability(cx, right.span, "..", &mut applicability) ); span_sugg(expr, sugg, applicability); }, (false, false) => (), } } if let ExprKind::Unary(UnOp::Neg, ref rhs) = expr.kind { if let ExprKind::MethodCall(_, ref args) = rhs.kind { if let Some(slf) = args.first() { if let ExprKind::Lit(ref lit) = slf.kind { match lit.kind { LitKind::Int(..) | LitKind::Float(..) => { let mut applicability = Applicability::MachineApplicable; span_lint_and_sugg( cx, PRECEDENCE, expr.span, "unary minus has lower precedence than method call", "consider adding parentheses to clarify your intent", format!( "-({})", snippet_with_applicability(cx, rhs.span, "..", &mut applicability) ), applicability, ); }, _ => (), } } } } } } } fn is_arith_expr(expr: &Expr) -> bool { match expr.kind { ExprKind::Binary(Spanned { node: op, .. }, _, _) => is_arith_op(op), _ => false, } } #[must_use] fn is_bit_op(op: BinOpKind) -> bool { use syntax::ast::BinOpKind::*; match op { BitXor | BitAnd | BitOr | Shl | Shr => true, _ => false, } } #[must_use] fn is_arith_op(op: BinOpKind) -> bool { use syntax::ast::BinOpKind::*; match op { Add | Sub | Mul | Div | Rem => true, _ => false, } }