use crate::utils::{ in_constant, is_normalizable, last_path_segment, match_def_path, paths, snippet, span_lint, span_lint_and_sugg, span_lint_and_then, sugg, }; use if_chain::if_chain; use rustc_ast as ast; use rustc_errors::Applicability; use rustc_hir::{Expr, ExprKind, GenericArg, Mutability, QPath, TyKind, UnOp}; use rustc_lint::{LateContext, LateLintPass}; use rustc_middle::ty::{self, cast::CastKind, Ty}; use rustc_session::{declare_lint_pass, declare_tool_lint}; use rustc_span::DUMMY_SP; use rustc_typeck::check::{cast::CastCheck, FnCtxt, Inherited}; use std::borrow::Cow; declare_clippy_lint! { /// **What it does:** Checks for transmutes that can't ever be correct on any /// architecture. /// /// **Why is this bad?** It's basically guaranteed to be undefined behaviour. /// /// **Known problems:** When accessing C, users might want to store pointer /// sized objects in `extradata` arguments to save an allocation. /// /// **Example:** /// ```ignore /// let ptr: *const T = core::intrinsics::transmute('x') /// ``` pub WRONG_TRANSMUTE, correctness, "transmutes that are confusing at best, undefined behaviour at worst and always useless" } // FIXME: Move this to `complexity` again, after #5343 is fixed declare_clippy_lint! { /// **What it does:** Checks for transmutes to the original type of the object /// and transmutes that could be a cast. /// /// **Why is this bad?** Readability. The code tricks people into thinking that /// something complex is going on. /// /// **Known problems:** None. /// /// **Example:** /// ```rust,ignore /// core::intrinsics::transmute(t); // where the result type is the same as `t`'s /// ``` pub USELESS_TRANSMUTE, nursery, "transmutes that have the same to and from types or could be a cast/coercion" } // FIXME: Merge this lint with USELESS_TRANSMUTE once that is out of the nursery. declare_clippy_lint! { /// **What it does:**Checks for transmutes that could be a pointer cast. /// /// **Why is this bad?** Readability. The code tricks people into thinking that /// something complex is going on. /// /// **Known problems:** None. /// /// **Example:** /// /// ```rust /// # let p: *const [i32] = &[]; /// unsafe { std::mem::transmute::<*const [i32], *const [u16]>(p) }; /// ``` /// Use instead: /// ```rust /// # let p: *const [i32] = &[]; /// p as *const [u16]; /// ``` pub TRANSMUTES_EXPRESSIBLE_AS_PTR_CASTS, complexity, "transmutes that could be a pointer cast" } declare_clippy_lint! { /// **What it does:** Checks for transmutes between a type `T` and `*T`. /// /// **Why is this bad?** It's easy to mistakenly transmute between a type and a /// pointer to that type. /// /// **Known problems:** None. /// /// **Example:** /// ```rust,ignore /// core::intrinsics::transmute(t) // where the result type is the same as /// // `*t` or `&t`'s /// ``` pub CROSSPOINTER_TRANSMUTE, complexity, "transmutes that have to or from types that are a pointer to the other" } declare_clippy_lint! { /// **What it does:** Checks for transmutes from a pointer to a reference. /// /// **Why is this bad?** This can always be rewritten with `&` and `*`. /// /// **Known problems:** /// - `mem::transmute` in statics and constants is stable from Rust 1.46.0, /// while dereferencing raw pointer is not stable yet. /// If you need to do this in those places, /// you would have to use `transmute` instead. /// /// **Example:** /// ```rust,ignore /// unsafe { /// let _: &T = std::mem::transmute(p); // where p: *const T /// } /// /// // can be written: /// let _: &T = &*p; /// ``` pub TRANSMUTE_PTR_TO_REF, complexity, "transmutes from a pointer to a reference type" } declare_clippy_lint! { /// **What it does:** Checks for transmutes from an integer to a `char`. /// /// **Why is this bad?** Not every integer is a Unicode scalar value. /// /// **Known problems:** /// - [`from_u32`] which this lint suggests using is slower than `transmute` /// as it needs to validate the input. /// If you are certain that the input is always a valid Unicode scalar value, /// use [`from_u32_unchecked`] which is as fast as `transmute` /// but has a semantically meaningful name. /// - You might want to handle `None` returned from [`from_u32`] instead of calling `unwrap`. /// /// [`from_u32`]: https://doc.rust-lang.org/std/char/fn.from_u32.html /// [`from_u32_unchecked`]: https://doc.rust-lang.org/std/char/fn.from_u32_unchecked.html /// /// **Example:** /// ```rust /// let x = 1_u32; /// unsafe { /// let _: char = std::mem::transmute(x); // where x: u32 /// } /// /// // should be: /// let _ = std::char::from_u32(x).unwrap(); /// ``` pub TRANSMUTE_INT_TO_CHAR, complexity, "transmutes from an integer to a `char`" } declare_clippy_lint! { /// **What it does:** Checks for transmutes from a `&[u8]` to a `&str`. /// /// **Why is this bad?** Not every byte slice is a valid UTF-8 string. /// /// **Known problems:** /// - [`from_utf8`] which this lint suggests using is slower than `transmute` /// as it needs to validate the input. /// If you are certain that the input is always a valid UTF-8, /// use [`from_utf8_unchecked`] which is as fast as `transmute` /// but has a semantically meaningful name. /// - You might want to handle errors returned from [`from_utf8`] instead of calling `unwrap`. /// /// [`from_utf8`]: https://doc.rust-lang.org/std/str/fn.from_utf8.html /// [`from_utf8_unchecked`]: https://doc.rust-lang.org/std/str/fn.from_utf8_unchecked.html /// /// **Example:** /// ```rust /// let b: &[u8] = &[1_u8, 2_u8]; /// unsafe { /// let _: &str = std::mem::transmute(b); // where b: &[u8] /// } /// /// // should be: /// let _ = std::str::from_utf8(b).unwrap(); /// ``` pub TRANSMUTE_BYTES_TO_STR, complexity, "transmutes from a `&[u8]` to a `&str`" } declare_clippy_lint! { /// **What it does:** Checks for transmutes from an integer to a `bool`. /// /// **Why is this bad?** This might result in an invalid in-memory representation of a `bool`. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// let x = 1_u8; /// unsafe { /// let _: bool = std::mem::transmute(x); // where x: u8 /// } /// /// // should be: /// let _: bool = x != 0; /// ``` pub TRANSMUTE_INT_TO_BOOL, complexity, "transmutes from an integer to a `bool`" } declare_clippy_lint! { /// **What it does:** Checks for transmutes from an integer to a float. /// /// **Why is this bad?** Transmutes are dangerous and error-prone, whereas `from_bits` is intuitive /// and safe. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// unsafe { /// let _: f32 = std::mem::transmute(1_u32); // where x: u32 /// } /// /// // should be: /// let _: f32 = f32::from_bits(1_u32); /// ``` pub TRANSMUTE_INT_TO_FLOAT, complexity, "transmutes from an integer to a float" } declare_clippy_lint! { /// **What it does:** Checks for transmutes from a float to an integer. /// /// **Why is this bad?** Transmutes are dangerous and error-prone, whereas `to_bits` is intuitive /// and safe. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// unsafe { /// let _: u32 = std::mem::transmute(1f32); /// } /// /// // should be: /// let _: u32 = 1f32.to_bits(); /// ``` pub TRANSMUTE_FLOAT_TO_INT, complexity, "transmutes from a float to an integer" } declare_clippy_lint! { /// **What it does:** Checks for transmutes from a pointer to a pointer, or /// from a reference to a reference. /// /// **Why is this bad?** Transmutes are dangerous, and these can instead be /// written as casts. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// let ptr = &1u32 as *const u32; /// unsafe { /// // pointer-to-pointer transmute /// let _: *const f32 = std::mem::transmute(ptr); /// // ref-ref transmute /// let _: &f32 = std::mem::transmute(&1u32); /// } /// // These can be respectively written: /// let _ = ptr as *const f32; /// let _ = unsafe{ &*(&1u32 as *const u32 as *const f32) }; /// ``` pub TRANSMUTE_PTR_TO_PTR, complexity, "transmutes from a pointer to a pointer / a reference to a reference" } declare_clippy_lint! { /// **What it does:** Checks for transmutes between collections whose /// types have different ABI, size or alignment. /// /// **Why is this bad?** This is undefined behavior. /// /// **Known problems:** Currently, we cannot know whether a type is a /// collection, so we just lint the ones that come with `std`. /// /// **Example:** /// ```rust /// // different size, therefore likely out-of-bounds memory access /// // You absolutely do not want this in your code! /// unsafe { /// std::mem::transmute::<_, Vec>(vec![2_u16]) /// }; /// ``` /// /// You must always iterate, map and collect the values: /// /// ```rust /// vec![2_u16].into_iter().map(u32::from).collect::>(); /// ``` pub UNSOUND_COLLECTION_TRANSMUTE, correctness, "transmute between collections of layout-incompatible types" } declare_lint_pass!(Transmute => [ CROSSPOINTER_TRANSMUTE, TRANSMUTE_PTR_TO_REF, TRANSMUTE_PTR_TO_PTR, USELESS_TRANSMUTE, WRONG_TRANSMUTE, TRANSMUTE_INT_TO_CHAR, TRANSMUTE_BYTES_TO_STR, TRANSMUTE_INT_TO_BOOL, TRANSMUTE_INT_TO_FLOAT, TRANSMUTE_FLOAT_TO_INT, UNSOUND_COLLECTION_TRANSMUTE, TRANSMUTES_EXPRESSIBLE_AS_PTR_CASTS, ]); // used to check for UNSOUND_COLLECTION_TRANSMUTE static COLLECTIONS: &[&[&str]] = &[ &paths::VEC, &paths::VEC_DEQUE, &paths::BINARY_HEAP, &paths::BTREESET, &paths::BTREEMAP, &paths::HASHSET, &paths::HASHMAP, ]; impl<'tcx> LateLintPass<'tcx> for Transmute { #[allow(clippy::similar_names, clippy::too_many_lines)] fn check_expr(&mut self, cx: &LateContext<'tcx>, e: &'tcx Expr<'_>) { if_chain! { if let ExprKind::Call(ref path_expr, ref args) = e.kind; if let ExprKind::Path(ref qpath) = path_expr.kind; if let Some(def_id) = cx.qpath_res(qpath, path_expr.hir_id).opt_def_id(); if match_def_path(cx, def_id, &paths::TRANSMUTE); then { // Avoid suggesting from/to bits and dereferencing raw pointers in const contexts. // See https://github.com/rust-lang/rust/issues/73736 for progress on making them `const fn`. // And see https://github.com/rust-lang/rust/issues/51911 for dereferencing raw pointers. let const_context = in_constant(cx, e.hir_id); let from_ty = cx.typeck_results().expr_ty(&args[0]); let to_ty = cx.typeck_results().expr_ty(e); match (&from_ty.kind(), &to_ty.kind()) { _ if from_ty == to_ty => span_lint( cx, USELESS_TRANSMUTE, e.span, &format!("transmute from a type (`{}`) to itself", from_ty), ), (ty::Ref(_, rty, rty_mutbl), ty::RawPtr(ptr_ty)) => span_lint_and_then( cx, USELESS_TRANSMUTE, e.span, "transmute from a reference to a pointer", |diag| { if let Some(arg) = sugg::Sugg::hir_opt(cx, &args[0]) { let rty_and_mut = ty::TypeAndMut { ty: rty, mutbl: *rty_mutbl, }; let sugg = if *ptr_ty == rty_and_mut { arg.as_ty(to_ty) } else { arg.as_ty(cx.tcx.mk_ptr(rty_and_mut)).as_ty(to_ty) }; diag.span_suggestion(e.span, "try", sugg.to_string(), Applicability::Unspecified); } }, ), (ty::Int(_) | ty::Uint(_), ty::RawPtr(_)) => span_lint_and_then( cx, USELESS_TRANSMUTE, e.span, "transmute from an integer to a pointer", |diag| { if let Some(arg) = sugg::Sugg::hir_opt(cx, &args[0]) { diag.span_suggestion( e.span, "try", arg.as_ty(&to_ty.to_string()).to_string(), Applicability::Unspecified, ); } }, ), (ty::Float(_) | ty::Char, ty::Ref(..) | ty::RawPtr(_)) => span_lint( cx, WRONG_TRANSMUTE, e.span, &format!("transmute from a `{}` to a pointer", from_ty), ), (ty::RawPtr(from_ptr), _) if from_ptr.ty == to_ty => span_lint( cx, CROSSPOINTER_TRANSMUTE, e.span, &format!( "transmute from a type (`{}`) to the type that it points to (`{}`)", from_ty, to_ty ), ), (_, ty::RawPtr(to_ptr)) if to_ptr.ty == from_ty => span_lint( cx, CROSSPOINTER_TRANSMUTE, e.span, &format!( "transmute from a type (`{}`) to a pointer to that type (`{}`)", from_ty, to_ty ), ), (ty::RawPtr(from_pty), ty::Ref(_, to_ref_ty, mutbl)) => span_lint_and_then( cx, TRANSMUTE_PTR_TO_REF, e.span, &format!( "transmute from a pointer type (`{}`) to a reference type \ (`{}`)", from_ty, to_ty ), |diag| { let arg = sugg::Sugg::hir(cx, &args[0], ".."); let (deref, cast) = if *mutbl == Mutability::Mut { ("&mut *", "*mut") } else { ("&*", "*const") }; let arg = if from_pty.ty == *to_ref_ty { arg } else { arg.as_ty(&format!("{} {}", cast, get_type_snippet(cx, qpath, to_ref_ty))) }; diag.span_suggestion( e.span, "try", sugg::make_unop(deref, arg).to_string(), Applicability::Unspecified, ); }, ), (ty::Int(ty::IntTy::I32) | ty::Uint(ty::UintTy::U32), &ty::Char) => { span_lint_and_then( cx, TRANSMUTE_INT_TO_CHAR, e.span, &format!("transmute from a `{}` to a `char`", from_ty), |diag| { let arg = sugg::Sugg::hir(cx, &args[0], ".."); let arg = if let ty::Int(_) = from_ty.kind() { arg.as_ty(ast::UintTy::U32.name_str()) } else { arg }; diag.span_suggestion( e.span, "consider using", format!("std::char::from_u32({}).unwrap()", arg.to_string()), Applicability::Unspecified, ); }, ) }, (ty::Ref(_, ty_from, from_mutbl), ty::Ref(_, ty_to, to_mutbl)) => { if_chain! { if let (&ty::Slice(slice_ty), &ty::Str) = (&ty_from.kind(), &ty_to.kind()); if let ty::Uint(ty::UintTy::U8) = slice_ty.kind(); if from_mutbl == to_mutbl; then { let postfix = if *from_mutbl == Mutability::Mut { "_mut" } else { "" }; span_lint_and_sugg( cx, TRANSMUTE_BYTES_TO_STR, e.span, &format!("transmute from a `{}` to a `{}`", from_ty, to_ty), "consider using", format!( "std::str::from_utf8{}({}).unwrap()", postfix, snippet(cx, args[0].span, ".."), ), Applicability::Unspecified, ); } else { if (cx.tcx.erase_regions(from_ty) != cx.tcx.erase_regions(to_ty)) && !const_context { span_lint_and_then( cx, TRANSMUTE_PTR_TO_PTR, e.span, "transmute from a reference to a reference", |diag| if let Some(arg) = sugg::Sugg::hir_opt(cx, &args[0]) { let ty_from_and_mut = ty::TypeAndMut { ty: ty_from, mutbl: *from_mutbl }; let ty_to_and_mut = ty::TypeAndMut { ty: ty_to, mutbl: *to_mutbl }; let sugg_paren = arg .as_ty(cx.tcx.mk_ptr(ty_from_and_mut)) .as_ty(cx.tcx.mk_ptr(ty_to_and_mut)); let sugg = if *to_mutbl == Mutability::Mut { sugg_paren.mut_addr_deref() } else { sugg_paren.addr_deref() }; diag.span_suggestion( e.span, "try", sugg.to_string(), Applicability::Unspecified, ); }, ) } } } }, (ty::RawPtr(_), ty::RawPtr(to_ty)) => span_lint_and_then( cx, TRANSMUTE_PTR_TO_PTR, e.span, "transmute from a pointer to a pointer", |diag| { if let Some(arg) = sugg::Sugg::hir_opt(cx, &args[0]) { let sugg = arg.as_ty(cx.tcx.mk_ptr(*to_ty)); diag.span_suggestion(e.span, "try", sugg.to_string(), Applicability::Unspecified); } }, ), (ty::Int(ty::IntTy::I8) | ty::Uint(ty::UintTy::U8), ty::Bool) => { span_lint_and_then( cx, TRANSMUTE_INT_TO_BOOL, e.span, &format!("transmute from a `{}` to a `bool`", from_ty), |diag| { let arg = sugg::Sugg::hir(cx, &args[0], ".."); let zero = sugg::Sugg::NonParen(Cow::from("0")); diag.span_suggestion( e.span, "consider using", sugg::make_binop(ast::BinOpKind::Ne, &arg, &zero).to_string(), Applicability::Unspecified, ); }, ) }, (ty::Int(_) | ty::Uint(_), ty::Float(_)) if !const_context => span_lint_and_then( cx, TRANSMUTE_INT_TO_FLOAT, e.span, &format!("transmute from a `{}` to a `{}`", from_ty, to_ty), |diag| { let arg = sugg::Sugg::hir(cx, &args[0], ".."); let arg = if let ty::Int(int_ty) = from_ty.kind() { arg.as_ty(format!( "u{}", int_ty.bit_width().map_or_else(|| "size".to_string(), |v| v.to_string()) )) } else { arg }; diag.span_suggestion( e.span, "consider using", format!("{}::from_bits({})", to_ty, arg.to_string()), Applicability::Unspecified, ); }, ), (ty::Float(float_ty), ty::Int(_) | ty::Uint(_)) if !const_context => span_lint_and_then( cx, TRANSMUTE_FLOAT_TO_INT, e.span, &format!("transmute from a `{}` to a `{}`", from_ty, to_ty), |diag| { let mut expr = &args[0]; let mut arg = sugg::Sugg::hir(cx, expr, ".."); if let ExprKind::Unary(UnOp::Neg, inner_expr) = &expr.kind { expr = &inner_expr; } if_chain! { // if the expression is a float literal and it is unsuffixed then // add a suffix so the suggestion is valid and unambiguous let op = format!("{}{}", arg, float_ty.name_str()).into(); if let ExprKind::Lit(lit) = &expr.kind; if let ast::LitKind::Float(_, ast::LitFloatType::Unsuffixed) = lit.node; then { match arg { sugg::Sugg::MaybeParen(_) => arg = sugg::Sugg::MaybeParen(op), _ => arg = sugg::Sugg::NonParen(op) } } } arg = sugg::Sugg::NonParen(format!("{}.to_bits()", arg.maybe_par()).into()); // cast the result of `to_bits` if `to_ty` is signed arg = if let ty::Int(int_ty) = to_ty.kind() { arg.as_ty(int_ty.name_str().to_string()) } else { arg }; diag.span_suggestion( e.span, "consider using", arg.to_string(), Applicability::Unspecified, ); }, ), (ty::Adt(from_adt, from_substs), ty::Adt(to_adt, to_substs)) => { if from_adt.did != to_adt.did || !COLLECTIONS.iter().any(|path| match_def_path(cx, to_adt.did, path)) { return; } if from_substs.types().zip(to_substs.types()) .any(|(from_ty, to_ty)| is_layout_incompatible(cx, from_ty, to_ty)) { span_lint( cx, UNSOUND_COLLECTION_TRANSMUTE, e.span, &format!( "transmute from `{}` to `{}` with mismatched layout is unsound", from_ty, to_ty ) ); } }, (_, _) if can_be_expressed_as_pointer_cast(cx, e, from_ty, to_ty) => span_lint_and_then( cx, TRANSMUTES_EXPRESSIBLE_AS_PTR_CASTS, e.span, &format!( "transmute from `{}` to `{}` which could be expressed as a pointer cast instead", from_ty, to_ty ), |diag| { if let Some(arg) = sugg::Sugg::hir_opt(cx, &args[0]) { let sugg = arg.as_ty(&to_ty.to_string()).to_string(); diag.span_suggestion(e.span, "try", sugg, Applicability::MachineApplicable); } } ), _ => { return; }, } } } } } /// Gets the snippet of `Bar` in `…::transmute`. If that snippet is /// not available , use /// the type's `ToString` implementation. In weird cases it could lead to types /// with invalid `'_` /// lifetime, but it should be rare. fn get_type_snippet(cx: &LateContext<'_>, path: &QPath<'_>, to_ref_ty: Ty<'_>) -> String { let seg = last_path_segment(path); if_chain! { if let Some(ref params) = seg.args; if !params.parenthesized; if let Some(to_ty) = params.args.iter().filter_map(|arg| match arg { GenericArg::Type(ty) => Some(ty), _ => None, }).nth(1); if let TyKind::Rptr(_, ref to_ty) = to_ty.kind; then { return snippet(cx, to_ty.ty.span, &to_ref_ty.to_string()).to_string(); } } to_ref_ty.to_string() } // check if the component types of the transmuted collection and the result have different ABI, // size or alignment fn is_layout_incompatible<'tcx>(cx: &LateContext<'tcx>, from: Ty<'tcx>, to: Ty<'tcx>) -> bool { let empty_param_env = ty::ParamEnv::empty(); // check if `from` and `to` are normalizable to avoid ICE (#4968) if !(is_normalizable(cx, empty_param_env, from) && is_normalizable(cx, empty_param_env, to)) { return false; } let from_ty_layout = cx.tcx.layout_of(empty_param_env.and(from)); let to_ty_layout = cx.tcx.layout_of(empty_param_env.and(to)); if let (Ok(from_layout), Ok(to_layout)) = (from_ty_layout, to_ty_layout) { from_layout.size != to_layout.size || from_layout.align != to_layout.align || from_layout.abi != to_layout.abi } else { // no idea about layout, so don't lint false } } /// Check if the type conversion can be expressed as a pointer cast, instead of /// a transmute. In certain cases, including some invalid casts from array /// references to pointers, this may cause additional errors to be emitted and/or /// ICE error messages. This function will panic if that occurs. fn can_be_expressed_as_pointer_cast<'tcx>( cx: &LateContext<'tcx>, e: &'tcx Expr<'_>, from_ty: Ty<'tcx>, to_ty: Ty<'tcx>, ) -> bool { use CastKind::{AddrPtrCast, ArrayPtrCast, FnPtrAddrCast, FnPtrPtrCast, PtrAddrCast, PtrPtrCast}; matches!( check_cast(cx, e, from_ty, to_ty), Some(PtrPtrCast | PtrAddrCast | AddrPtrCast | ArrayPtrCast | FnPtrPtrCast | FnPtrAddrCast) ) } /// If a cast from `from_ty` to `to_ty` is valid, returns an Ok containing the kind of /// the cast. In certain cases, including some invalid casts from array references /// to pointers, this may cause additional errors to be emitted and/or ICE error /// messages. This function will panic if that occurs. fn check_cast<'tcx>(cx: &LateContext<'tcx>, e: &'tcx Expr<'_>, from_ty: Ty<'tcx>, to_ty: Ty<'tcx>) -> Option { let hir_id = e.hir_id; let local_def_id = hir_id.owner; Inherited::build(cx.tcx, local_def_id).enter(|inherited| { let fn_ctxt = FnCtxt::new(&inherited, cx.param_env, hir_id); // If we already have errors, we can't be sure we can pointer cast. assert!( !fn_ctxt.errors_reported_since_creation(), "Newly created FnCtxt contained errors" ); if let Ok(check) = CastCheck::new( &fn_ctxt, e, from_ty, to_ty, // We won't show any error to the user, so we don't care what the span is here. DUMMY_SP, DUMMY_SP, ) { let res = check.do_check(&fn_ctxt); // do_check's documentation says that it might return Ok and create // errors in the fcx instead of returing Err in some cases. Those cases // should be filtered out before getting here. assert!( !fn_ctxt.errors_reported_since_creation(), "`fn_ctxt` contained errors after cast check!" ); res.ok() } else { None } }) }