use crate::{ map_unit_fn::OPTION_MAP_UNIT_FN, matches::MATCH_AS_REF, utils::{is_allowed, match_def_path, match_var, paths, peel_hir_expr_refs}, }; use clippy_utils::diagnostics::span_lint_and_sugg; use clippy_utils::source::{snippet_with_applicability, snippet_with_context}; use clippy_utils::ty::{can_partially_move_ty, is_type_diagnostic_item, peel_mid_ty_refs_is_mutable}; use rustc_ast::util::parser::PREC_POSTFIX; use rustc_errors::Applicability; use rustc_hir::{ def::Res, intravisit::{walk_expr, ErasedMap, NestedVisitorMap, Visitor}, Arm, BindingAnnotation, Block, Expr, ExprKind, Mutability, Pat, PatKind, Path, QPath, }; use rustc_lint::{LateContext, LateLintPass, LintContext}; use rustc_middle::lint::in_external_macro; use rustc_session::{declare_lint_pass, declare_tool_lint}; use rustc_span::{ symbol::{sym, Ident}, SyntaxContext, }; declare_clippy_lint! { /// **What it does:** Checks for usages of `match` which could be implemented using `map` /// /// **Why is this bad?** Using the `map` method is clearer and more concise. /// /// **Known problems:** None. /// /// **Example:** /// /// ```rust /// match Some(0) { /// Some(x) => Some(x + 1), /// None => None, /// }; /// ``` /// Use instead: /// ```rust /// Some(0).map(|x| x + 1); /// ``` pub MANUAL_MAP, style, "reimplementation of `map`" } declare_lint_pass!(ManualMap => [MANUAL_MAP]); impl LateLintPass<'_> for ManualMap { #[allow(clippy::too_many_lines)] fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) { if in_external_macro(cx.sess(), expr.span) { return; } if let ExprKind::Match(scrutinee, [arm1 @ Arm { guard: None, .. }, arm2 @ Arm { guard: None, .. }], _) = expr.kind { let (scrutinee_ty, ty_ref_count, ty_mutability) = peel_mid_ty_refs_is_mutable(cx.typeck_results().expr_ty(scrutinee)); if !(is_type_diagnostic_item(cx, scrutinee_ty, sym::option_type) && is_type_diagnostic_item(cx, cx.typeck_results().expr_ty(expr), sym::option_type)) { return; } let expr_ctxt = expr.span.ctxt(); let (some_expr, some_pat, pat_ref_count, is_wild_none) = match ( try_parse_pattern(cx, arm1.pat, expr_ctxt), try_parse_pattern(cx, arm2.pat, expr_ctxt), ) { (Some(OptionPat::Wild), Some(OptionPat::Some { pattern, ref_count })) if is_none_expr(cx, arm1.body) => { (arm2.body, pattern, ref_count, true) }, (Some(OptionPat::None), Some(OptionPat::Some { pattern, ref_count })) if is_none_expr(cx, arm1.body) => { (arm2.body, pattern, ref_count, false) }, (Some(OptionPat::Some { pattern, ref_count }), Some(OptionPat::Wild)) if is_none_expr(cx, arm2.body) => { (arm1.body, pattern, ref_count, true) }, (Some(OptionPat::Some { pattern, ref_count }), Some(OptionPat::None)) if is_none_expr(cx, arm2.body) => { (arm1.body, pattern, ref_count, false) }, _ => return, }; // Top level or patterns aren't allowed in closures. if matches!(some_pat.kind, PatKind::Or(_)) { return; } let some_expr = match get_some_expr(cx, some_expr, expr_ctxt) { Some(expr) => expr, None => return, }; if cx.typeck_results().expr_ty(some_expr) == cx.tcx.types.unit && !is_allowed(cx, OPTION_MAP_UNIT_FN, expr.hir_id) { return; } if !can_move_expr_to_closure(cx, some_expr) { return; } // Determine which binding mode to use. let explicit_ref = some_pat.contains_explicit_ref_binding(); let binding_ref = explicit_ref.or_else(|| (ty_ref_count != pat_ref_count).then(|| ty_mutability)); let as_ref_str = match binding_ref { Some(Mutability::Mut) => ".as_mut()", Some(Mutability::Not) => ".as_ref()", None => "", }; let mut app = Applicability::MachineApplicable; // Remove address-of expressions from the scrutinee. Either `as_ref` will be called, or // it's being passed by value. let scrutinee = peel_hir_expr_refs(scrutinee).0; let (scrutinee_str, _) = snippet_with_context(cx, scrutinee.span, expr_ctxt, "..", &mut app); let scrutinee_str = if scrutinee.span.ctxt() == expr.span.ctxt() && scrutinee.precedence().order() < PREC_POSTFIX { format!("({})", scrutinee_str) } else { scrutinee_str.into() }; let body_str = if let PatKind::Binding(annotation, _, some_binding, None) = some_pat.kind { match can_pass_as_func(cx, some_binding, some_expr) { Some(func) if func.span.ctxt() == some_expr.span.ctxt() => { snippet_with_applicability(cx, func.span, "..", &mut app).into_owned() }, _ => { if match_var(some_expr, some_binding.name) && !is_allowed(cx, MATCH_AS_REF, expr.hir_id) && binding_ref.is_some() { return; } // `ref` and `ref mut` annotations were handled earlier. let annotation = if matches!(annotation, BindingAnnotation::Mutable) { "mut " } else { "" }; format!( "|{}{}| {}", annotation, some_binding, snippet_with_context(cx, some_expr.span, expr_ctxt, "..", &mut app).0 ) }, } } else if !is_wild_none && explicit_ref.is_none() { // TODO: handle explicit reference annotations. format!( "|{}| {}", snippet_with_context(cx, some_pat.span, expr_ctxt, "..", &mut app).0, snippet_with_context(cx, some_expr.span, expr_ctxt, "..", &mut app).0 ) } else { // Refutable bindings and mixed reference annotations can't be handled by `map`. return; }; span_lint_and_sugg( cx, MANUAL_MAP, expr.span, "manual implementation of `Option::map`", "try this", format!("{}{}.map({})", scrutinee_str, as_ref_str, body_str), app, ); } } } // Checks if the expression can be moved into a closure as is. fn can_move_expr_to_closure(cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) -> bool { struct V<'cx, 'tcx> { cx: &'cx LateContext<'tcx>, make_closure: bool, } impl Visitor<'tcx> for V<'_, 'tcx> { type Map = ErasedMap<'tcx>; fn nested_visit_map(&mut self) -> NestedVisitorMap { NestedVisitorMap::None } fn visit_expr(&mut self, e: &'tcx Expr<'_>) { match e.kind { ExprKind::Break(..) | ExprKind::Continue(_) | ExprKind::Ret(_) | ExprKind::Yield(..) | ExprKind::InlineAsm(_) | ExprKind::LlvmInlineAsm(_) => { self.make_closure = false; }, // Accessing a field of a local value can only be done if the type isn't // partially moved. ExprKind::Field(base_expr, _) if matches!( base_expr.kind, ExprKind::Path(QPath::Resolved(_, Path { res: Res::Local(_), .. })) ) && can_partially_move_ty(self.cx, self.cx.typeck_results().expr_ty(base_expr)) => { // TODO: check if the local has been partially moved. Assume it has for now. self.make_closure = false; return; } _ => (), }; walk_expr(self, e); } } let mut v = V { cx, make_closure: true }; v.visit_expr(expr); v.make_closure } // Checks whether the expression could be passed as a function, or whether a closure is needed. // Returns the function to be passed to `map` if it exists. fn can_pass_as_func(cx: &LateContext<'tcx>, binding: Ident, expr: &'tcx Expr<'_>) -> Option<&'tcx Expr<'tcx>> { match expr.kind { ExprKind::Call(func, [arg]) if match_var(arg, binding.name) && cx.typeck_results().expr_adjustments(arg).is_empty() => { Some(func) }, _ => None, } } enum OptionPat<'a> { Wild, None, Some { // The pattern contained in the `Some` tuple. pattern: &'a Pat<'a>, // The number of references before the `Some` tuple. // e.g. `&&Some(_)` has a ref count of 2. ref_count: usize, }, } // Try to parse into a recognized `Option` pattern. // i.e. `_`, `None`, `Some(..)`, or a reference to any of those. fn try_parse_pattern(cx: &LateContext<'tcx>, pat: &'tcx Pat<'_>, ctxt: SyntaxContext) -> Option> { fn f(cx: &LateContext<'tcx>, pat: &'tcx Pat<'_>, ref_count: usize, ctxt: SyntaxContext) -> Option> { match pat.kind { PatKind::Wild => Some(OptionPat::Wild), PatKind::Ref(pat, _) => f(cx, pat, ref_count + 1, ctxt), PatKind::Path(QPath::Resolved(None, path)) if path .res .opt_def_id() .map_or(false, |id| match_def_path(cx, id, &paths::OPTION_NONE)) => { Some(OptionPat::None) }, PatKind::TupleStruct(QPath::Resolved(None, path), [pattern], _) if path .res .opt_def_id() .map_or(false, |id| match_def_path(cx, id, &paths::OPTION_SOME)) && pat.span.ctxt() == ctxt => { Some(OptionPat::Some { pattern, ref_count }) }, _ => None, } } f(cx, pat, 0, ctxt) } // Checks for an expression wrapped by the `Some` constructor. Returns the contained expression. fn get_some_expr(cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>, ctxt: SyntaxContext) -> Option<&'tcx Expr<'tcx>> { // TODO: Allow more complex expressions. match expr.kind { ExprKind::Call( Expr { kind: ExprKind::Path(QPath::Resolved(None, path)), .. }, [arg], ) if ctxt == expr.span.ctxt() => { if match_def_path(cx, path.res.opt_def_id()?, &paths::OPTION_SOME) { Some(arg) } else { None } }, ExprKind::Block( Block { stmts: [], expr: Some(expr), .. }, _, ) => get_some_expr(cx, expr, ctxt), _ => None, } } // Checks for the `None` value. fn is_none_expr(cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) -> bool { match expr.kind { ExprKind::Path(QPath::Resolved(None, path)) => path .res .opt_def_id() .map_or(false, |id| match_def_path(cx, id, &paths::OPTION_NONE)), ExprKind::Block( Block { stmts: [], expr: Some(expr), .. }, _, ) => is_none_expr(cx, expr), _ => false, } }