use syntax::ptr::P; use syntax::ast; use syntax::ast::*; use syntax::ast_util::{is_comparison_binop, binop_to_string}; use syntax::visit::{FnKind}; use rustc::lint::{Context, LintPass, LintArray, Lint, Level}; use rustc::middle::ty::{self, expr_ty, ty_str, ty_ptr, ty_rptr, ty_float}; use syntax::codemap::{Span, Spanned}; use types::span_note_and_lint; fn walk_ty<'t>(ty: ty::Ty<'t>) -> ty::Ty<'t> { match ty.sty { ty_ptr(ref tm) | ty_rptr(_, ref tm) => walk_ty(tm.ty), _ => ty } } /// Handles uncategorized lints /// Currently handles linting of if-let-able matches #[allow(missing_copy_implementations)] pub struct MiscPass; declare_lint!(pub SINGLE_MATCH, Warn, "Warn on usage of matches with a single nontrivial arm"); impl LintPass for MiscPass { fn get_lints(&self) -> LintArray { lint_array!(SINGLE_MATCH) } fn check_expr(&mut self, cx: &Context, expr: &Expr) { if let ExprMatch(ref ex, ref arms, ast::MatchSource::Normal) = expr.node { if arms.len() == 2 { if arms[0].guard.is_none() && arms[1].pats.len() == 1 { match arms[1].body.node { ExprTup(ref v) if v.len() == 0 && arms[1].guard.is_none() => (), ExprBlock(ref b) if b.stmts.len() == 0 && arms[1].guard.is_none() => (), _ => return } // In some cases, an exhaustive match is preferred to catch situations when // an enum is extended. So we only consider cases where a `_` wildcard is used if arms[1].pats[0].node == PatWild(PatWildSingle) && arms[0].pats.len() == 1 { let map = cx.sess().codemap(); span_note_and_lint(cx, SINGLE_MATCH, expr.span, "You seem to be trying to use match for destructuring a single type. Did you mean to use `if let`?", &*format!("Try if let {} = {} {{ ... }}", &*map.span_to_snippet(arms[0].pats[0].span).unwrap_or("..".to_string()), &*map.span_to_snippet(ex.span).unwrap_or("..".to_string())) ); } } } } } } declare_lint!(pub STR_TO_STRING, Warn, "Warn when a String could use to_owned() instead of to_string()"); #[allow(missing_copy_implementations)] pub struct StrToStringPass; impl LintPass for StrToStringPass { fn get_lints(&self) -> LintArray { lint_array!(STR_TO_STRING) } fn check_expr(&mut self, cx: &Context, expr: &ast::Expr) { match expr.node { ast::ExprMethodCall(ref method, _, ref args) if method.node.as_str() == "to_string" && is_str(cx, &*args[0]) => { cx.span_lint(STR_TO_STRING, expr.span, "str.to_owned() is faster"); }, _ => () } fn is_str(cx: &Context, expr: &ast::Expr) -> bool { match walk_ty(expr_ty(cx.tcx, expr)).sty { ty_str => true, _ => false } } } } declare_lint!(pub TOPLEVEL_REF_ARG, Warn, "Warn about pattern matches with top-level `ref` bindings"); #[allow(missing_copy_implementations)] pub struct TopLevelRefPass; impl LintPass for TopLevelRefPass { fn get_lints(&self) -> LintArray { lint_array!(TOPLEVEL_REF_ARG) } fn check_fn(&mut self, cx: &Context, _: FnKind, decl: &FnDecl, _: &Block, _: Span, _: NodeId) { for ref arg in decl.inputs.iter() { if let PatIdent(BindByRef(_), _, _) = arg.pat.node { cx.span_lint( TOPLEVEL_REF_ARG, arg.pat.span, "`ref` directly on a function argument is ignored. Have you considered using a reference type instead?" ); } } } } declare_lint!(pub CMP_NAN, Deny, "Deny comparisons to std::f32::NAN or std::f64::NAN"); #[derive(Copy,Clone)] pub struct CmpNan; impl LintPass for CmpNan { fn get_lints(&self) -> LintArray { lint_array!(CMP_NAN) } fn check_expr(&mut self, cx: &Context, expr: &Expr) { if let ExprBinary(ref cmp, ref left, ref right) = expr.node { if is_comparison_binop(cmp.node) { if let &ExprPath(_, ref path) = &left.node { check_nan(cx, path, expr.span); } if let &ExprPath(_, ref path) = &right.node { check_nan(cx, path, expr.span); } } } } } fn check_nan(cx: &Context, path: &Path, span: Span) { path.segments.last().map(|seg| if seg.identifier.as_str() == "NAN" { cx.span_lint(CMP_NAN, span, "Doomed comparison with NAN, use std::{f32,f64}::is_nan instead"); }); } declare_lint!(pub FLOAT_CMP, Warn, "Warn on ==/!= comparison of floaty values"); #[derive(Copy,Clone)] pub struct FloatCmp; impl LintPass for FloatCmp { fn get_lints(&self) -> LintArray { lint_array!(FLOAT_CMP) } fn check_expr(&mut self, cx: &Context, expr: &Expr) { if let ExprBinary(ref cmp, ref left, ref right) = expr.node { let op = cmp.node; if (op == BiEq || op == BiNe) && (is_float(cx, left) || is_float(cx, right)) { let map = cx.sess().codemap(); cx.span_lint(FLOAT_CMP, expr.span, &format!( "{}-Comparison of f32 or f64 detected. You may want to change this to 'abs({} - {}) < epsilon' for some suitable value of epsilon", binop_to_string(op), &*map.span_to_snippet(left.span).unwrap_or("..".to_string()), &*map.span_to_snippet(right.span).unwrap_or("..".to_string()))); } } } } fn is_float(cx: &Context, expr: &Expr) -> bool { if let ty_float(_) = walk_ty(expr_ty(cx.tcx, expr)).sty { true } else { false } } declare_lint!(pub PRECEDENCE, Warn, "Warn on mixing bit ops with integer arithmetic without parenthesis"); #[derive(Copy,Clone)] pub struct Precedence; impl LintPass for Precedence { fn get_lints(&self) -> LintArray { lint_array!(PRECEDENCE) } fn check_expr(&mut self, cx: &Context, expr: &Expr) { if let ExprBinary(Spanned { node: op, ..}, ref left, ref right) = expr.node { if is_bit_op(op) { if let ExprBinary(Spanned { node: lop, ..}, _, _) = left.node { if is_arith_op(lop) { cx.span_lint(PRECEDENCE, expr.span, "Operator precedence can trip the unwary. Please consider adding parenthesis to the subexpression to make the meaning more clear."); } } else { if let ExprBinary(Spanned { node: rop, ..}, _, _) = right.node { if is_arith_op(rop) { cx.span_lint(PRECEDENCE, expr.span, "Operator precedence can trip the unwary. Please consider adding parenthesis to the subexpression to make the meaning more clear."); } } } } } } } fn is_bit_op(op : BinOp_) -> bool { match op { BiBitXor | BiBitAnd | BiBitOr | BiShl | BiShr => true, _ => false } } fn is_arith_op(op : BinOp_) -> bool { match op { BiAdd | BiSub | BiMul | BiDiv | BiRem => true, _ => false } }